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Abstract

Expanding access to solar photovoltaics (PV) may help to reduce the incidence of
energy poverty. Yet little is known about the strength and magnitude of this rela-
tionship. This paper uses cross-sectional survey data from the Australian Bureau of
Statistics to conduct a retrospective analysis of the effects of having rooftop solar PV
for Australian households. As the main identification challenges are the potential for
omitted variables and reverse causality, we present results for regressions controlling
for potential confounders and also use an instrumental variable approach. The study
finds that having solar PV is associated with a large decrease in the likelihood of expe-
riencing energy poverty based on objective indicators that compare household incomes
and energy bills. Having solar PV is also associated with a reduction in self-reported
difficulty in paying bills on time, although this effect is less robust across estimations.
The findings could inform future policies for promoting residential solar PV through
an improved understanding of likely impacts.
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1 Introduction

Policymakers around the world are increasingly focusing on addressing energy poverty given

its links to outcomes such as physical and mental health risks (Howden-Chapman et al.,

2012; Liddell and Morris, 2010). Energy-poor households are more likely to face social

isolation, use health services more frequently, and have higher rates of depression and asthma

(Thomson and Snell, 2013). Broadly, a household is said to experience energy poverty when

it is unable to maintain a minimum level of domestic energy services to meet biological

and social requirements (Bouzarovski and Petrova, 2015). While the term “fuel poverty”

is similar, this paper uses the term “energy poverty” because it is more common outside

Western Europe and is a broader term, encompassing other energy forms besides fuels.

While energy poverty is a particularly important challenge in developing countries (Nuss-

baumer, Bazilian and Modi, 2012), some residents in developed countries such as Australia

are also energy poor in some key dimensions. Efforts to address energy poverty in developed

countries often concentrate on improving the energy efficiency of dwellings, for example by

installing more energy-efficient heating equipment or insulation (Sovacool, 2015). Higher lev-

els of energy efficiency decrease the marginal cost of energy services. This can help to place

downward pressure on energy bills and also enable higher consumption of energy services

such as heating and cooling (Best and Burke, 2019; Hammerle and Burke, 2022; Sovacool,

2015).

Similarly, rooftop solar PV may have an important effect in reducing energy poverty.

Solar households are able to reduce their purchases of electricity from the grid and boost their

overall electricity consumption (Best and Sinha, 2021; Rodŕıguez et al., 2018; Judson and

Zirakbash, 2022; Scheier and Kittner, 2022). Some households also receive feed-in tariffs for

their solar exports. The opportunity provided by residential solar PV is particularly relevant

in sunny countries, such as Australia. However, differences remain in the uptake of different

household groups, driven by barriers such as landlord-tenant information asymmetries, credit

constraints, and imperfect information (Best, Burke, and Nishitateno, 2021). Households
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with high levels of wealth, who are homeowners, and who live in either semi- or fully-

detached houses are among those with the highest rates of rooftop solar access (Best, Burke,

and Nishitateno, 2019; Zander, 2020). Solar PV is often less accessible to less well-off

households.

In response, governments around Australia have introduced policies to support specific

groups of households to access solar PV. However, little is known about the extent to which

the technology is associated with reductions in energy poverty. Past studies have typically

treated solar PV as one of many determinants of energy poverty and have not conducted a

comprehensive assessment of impacts (Best and Burke, 2019; Best and Sinha, 2021). Rel-

evant research would enable policymakers who aim to address energy poverty to better

understand their options.

Existing literature typically finds no consistently significant impact of binary measures

of having solar PV on subjective indicators of energy poverty (Best and Burke, 2019; Best

and Sinha, 2021). Subjective indicators are based on asking respondents to personally assess

their own situations. A natural next step is to further consider objective indicators of energy

poverty, which often compare energy expenditures against household incomes. Additionally,

using the size of a household’s solar PV system in kilowatts rather than binary measures

of access will enable a more detailed understanding of any impacts, including potentially

diminishing marginal returns.

This paper conducts a retrospective analysis of the impacts of solar PV on energy ex-

penditures and energy poverty in Australia. The main research question is: are Australian

households with solar PV less likely to experience energy poverty? To answer this question

we use cross-sectional household-level survey data from the combined Australian Bureau of

Statistics (ABS) 2015-16 Household Expenditure Survey and Survey of Income and Housing.

Our study focuses on rooftop solar PV and does not consider solar thermal technologies.

To the best of our knowledge, this is the first study to seek to assess the impacts of

solar PV on energy poverty using household survey data and rigorous econometric methods.
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Three indicators of energy poverty are used: two objective and one subjective. Additionally,

the study uses two measures of household access to solar PV: the size of a household’s solar

PV system and the expected daily solar PV output from the system. We present results of

regressions that control for a range of potential confounders and also use an instrumental

variable (IV) approach. Specifically, we instrument a household’s solar PV capacity with the

average capacity of similar households in a household’s state or territory who do not live in

their same local area. A measure of household net wealth is controlled for in all estimations.

The next section provides background on the adoption of solar PV in Australia and the

determinants of energy poverty. We then present the methods, followed by the results. The

paper concludes by exploring possible implications of the results for policies that expand

access to residential solar PV in Australia.

2 Background

2.1 Solar PV in Australia

Australia is one of the global forerunners in the uptake of rooftop solar PV. In June 2021,

around 30 percent of suitable Australian dwellings used the technology (Australian Photo-

voltaic Institute, 2021b).1 Solar PV has also become a key source of electricity for some

off-grid communities in regional and remote areas, including Indigenous communities. A

2016 survey of Northern Territory homelands and outstations found that 40 percent had a

solar PV system, the majority of which were diesel hybrids (Martire, 2020).

Various government incentive programs have been set up to help promote the uptake

of solar PV in Australia. The federal government’s Small-Scale Renewable Energy Scheme

(SRES) provides an upfront subsidy that is higher for postcodes with greater solar exposure

(Australian Government, 2022). More recently, a policy in the state of Victoria provides

1This figure uses data from the Australian Bureau of Statistics on the number of freestanding and semi-
detached dwellings in each postcode.
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financial support to install solar PV to households who have a combined gross household

income of less than A$180,000 per year (Solar Victoria, 2021), while the Australian Capital

Territory has implemented a policy to support low-income households to install solar panels

on their rooftops (ACT Government, 2019).2 There have also been programs to increase

solar PV uptake in remote Indigenous communities. For example, the federal government’s

Remote Australia Strategies Program funded the program “Bushlight” to install stand-alone

systems between 2002 and 2013 (Martire, 2020).

Among other factors, the theoretical relationship between solar PV and energy poverty

depends on the type of metering used for solar systems. In Australia, there are two types of

metering that have been used for systems connected to electricity grids. With net metering,

only excess electricity that a household does not use themselves is fed onto the electricity

grid. Households also only purchase residual electricity from the grid. In contrast, gross

meters are set up so that all electricity produced by the system is exported to the grid.

Households with gross meters receive larger feed-in tariff revenues but pay to consume more

electricity from the grid than households on net meters, all else equal.

The impact of rooftop solar PV and energy poverty also depends on who pays for the

system. The purchase of a solar PV system brings energy costs forward in time, as the

purchaser incurs a large upfront capital cost. For vulnerable households, paying for solar

panels may consequently even exacerbate energy poverty in the short term. If the system

were instead paid for by an external agency, such as the government (and funded by taxes on

high-income earners, for example), the benefits for vulnerable households would be expected

to be larger.

The dataset does not enable us to identify how a household’s solar PV system was

financed. However, depending on the location of the household, the SRES subsidy covered

approximately 35 to 48 percent of the average 3 kW solar PV system cost of A$5,347 in 2015

2A$1 is approximately equal to US$0.70, so A$180,000 is around US$126,000.
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(Solar Choice, 2015).3 The installation of a system leads to the generation of small-scale

technology certificates, which form the basis of the subsidy. Large purchasers of wholesale

electricity, including electricity retailers, are legally required to buy these certificates and

can pass the costs onto customers.

2.2 Solutions to energy poverty

Research on the causes of energy poverty in developed countries often refers to three factors:

(1) low incomes; (2) high energy prices; and (3) insufficient energy efficiency (Boardman,

2013; Churchill and Smyth, 2020). Low levels of income or wealth do not fully explain the

prevalence of energy poverty by themselves (Hills, 2011). High energy prices are particularly

problematic for households with low incomes and/or high energy needs, resulting from factors

such as climate and whether dwellings are energy efficient (Bouzarovski and Herrero, 2017;

Churchill and Smyth, 2020). Households can face different prices within and across regions

for reasons including that they use different combinations of energy types including electricity

and natural gas and are customers of different energy retailers. Other important factors

for energy poverty include access to energy grids and levels of energy needs, for example

whether household members rely on electrical medical equipment. In Australia, 2 percent

of the population lives in remote or regional areas that are off-grid and thus need to rely on

distributed energy solutions (ARENA, 2021).

Low energy efficiency due to factors such as inadequate insulation is often highly influ-

ential in whether a household experiences energy poverty in developed countries (Best and

Burke, 2019; Best and Sinha, 2021; Mohr, 2018; Sovacool, 2015; Walker and Day, 2012).

Other energy efficiency measures – such as double glazing of windows – may also help to

reduce the likelihood that households are energy poor (Legendre and Ricci, 2015). However,

some households may remain in energy poverty even after large improvements to the energy

3This calculation is a multiplication of the size of the system, the period of time during which SRES
certificates can be created, a variable certificate price of A$35 (close to the maximum of A$40), and a
subsidy factor that varies across postcodes (Australian Government, 2022).
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efficiency of their dwellings if for example they have low incomes or difficulties accessing

affordable energy (Walker et al., 2014).

Helping vulnerable households to install solar PV is increasingly viewed as an important

way to reduce energy poverty. In communities around the world, solar PV plays a crucial role

in improving livelihoods and supporting economic growth and social development (Pagliaro

and Meneguzzo, 2020). For households who live in remote communities without access to

established power grids, the use of solar PV systems can support basic electrification cheaply,

reliably, and quickly, while being more environmentally sustainable than other solutions such

as diesel generators (Stojanovski, Thurber and Wolak, 2017; Urmee and Md, 2016). In

developing countries, the use of solar PV systems can reduce the use of kerosene, increase

the tendency to charge mobile phones at home, and help to transition households to using

modern electric lights as their main source of lighting (Stojanovski et al., 2017).

The magnitude of the impact of installing solar PV on a household’s propensity to ex-

perience energy poverty is not yet clear. While a study by Obeng et al. (2008) found that

80 percent of non-electrified households in Ghana are energy poor compared with only 10

percent of solar households, whether there were causal effects of having solar panels is not

known. To understand how installing solar PV can reduce energy poverty, studies have

conducted simulations of the solar potential in disadvantaged areas of Scotland (Andreadis

et al., 2013) and Spain (Rodŕıguez et al., 2018). Others have relied on qualitative analyses

based on focus groups and interviews to understand the barriers and enablers of extending

decentralised solar PV to vulnerable households in India (Yadav et al., 2019) and experiences

with solar PV among South Korean social housing residents (Lee and Shepley, 2020). Pitt

and Nolden (2020) identified business models to extend access to solar PV to disadvantaged

households. In general, studies stress the importance of solar PV in addressing inequities

but do not accurately quantify impacts.
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3 Data

This paper uses detailed microdata from the 2015-16 Household Expenditure Survey (HES)

and Survey of Income and Housing (SIH) of the Australian Bureau of Statistics (Australian

Bureau of Statistics, 2017). The HES and SIH are cross-sectional household surveys and ask

respondents questions on their household and personal characteristics, housing attributes,

income, and net wealth. In the HES, respondents also complete questions about household

expenditures and financial stress. Since 2003-2004, the SIH has been conducted every two

years, and the HES every six years. In every sixth year, some households are asked to

complete questions for the SIH only. Others answer questions for the HES after they complete

the SIH, meaning that the same response ID connects their answers. We use the responses

from this second group of households.

The surveys collect information from the usual residents of private dwellings in urban

and rural areas of Australia. Usual residents are those who view the dwelling as their own

or main home. The population from which a sample is drawn represents about 97 percent of

Australian residents, as very remote areas are excluded. Some energy poor households are

thus excluded from the analysis, especially given that energy poverty is more severe in remote

areas. The dwellings of the households are selected from the private dwelling framework of

the ABS Population Survey Master Sample. With the aim of ensuring that income and

expenditure patterns are representative across the year, the ABS selects dwellings over a

twelve-month enumeration period. Each household is surveyed once at some stage over this

time period.

In 2015-2016, 15,294 households were contacted and in the scope of both surveys. 66

percent of these households were included in the final dataset, with 99 percent of those

who were not included either not responding or responding inadequately (Australian Bureau

of Statistics, 2017). In total, 10,046 households completed both surveys, with households

selected based on a stratified multistage cluster design.
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The sample used in this paper includes both households who do not have solar PV and

solar households who provided information on the size of their solar PV system (measured

in kilowatts). To understand whether households have solar PV, the SIH asks: “Thinking

about solar energy, does this [dwelling] have solar panels to generate electricity?” The sample

size is 9,900 households, of whom 84 percent did not have solar PV. Around 150 households

were excluded as they reported having solar PV but did not report the size of their system.

A full list of variables and descriptive statistics is provided in Table A.1. of the Appendix.

There are two reasons for using data from both the HES and SIH. First, the analysis

requires information on both energy expenditures and solar PV. The HES collects infor-

mation about household energy expenditures (excluding gasoline and diesel expenditures for

transport), while the SIH enables examination of whether households have solar PV. Second,

these surveys are the most recent national Australian datasets to combine these variables

for the same households.

Two datasets from the Australian Government’s Bureau of Meteorology are also used.

The first is monthly data on solar exposure over July 2015–June 2016 (Bureau of Meteorology,

2020), measured as the total amount of solar energy per day in megajoules per square meter

that falls on a horizontal surface. The second is annual data on the numbers of heating

and cooling degree days, otherwise called HDDs and CDDs, during 1 July 2015–30 June

2016. The Bureau of Meteorology calculates HDDs and CDDs based on deviations from

the “average” daily temperature, with this average proxied by the sum of the maximum

and minimum daily temperatures for a day divided by two. As recommended by the World

Health Organization (Ormandy and Ezratty, 2012), we use a base of 24 degrees Celsius for

CDDs and 18 degrees Celsius for HDDs. For example if the average daily temperature in a

region is 30 degrees, the cooling equivalent is 6 degrees (6 CDDs).

We use Geographical Information Systems (GIS) to match the weather variables to house-

holds. GIS zonal statistics are used to estimate solar exposure at the postal area level.4 Each

4The ABS releases data at the postal area level rather than the postcode level. Postcodes do not exist
for some areas and postcode boundaries can be defined differently by different agencies.
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postal area is assigned the average value for solar exposure of the 100m2 areas contained

within their boundaries. For the CDDs and HDDs variables, we assign the values measured

at the closest weather station to each household in a postal area.

4 Methods

Let Eh represent the energy expenditure of household h or alternatively if household h

experiences energy poverty. The energy expenditure variable is continuous, whereas the

energy poverty indicators are binary variables. Eh can be modelled as the following general

function:

Eh = β0 + β1Sh +Xhβ + εh (1)

Where Sh equals the number of kilowatts of a household’s solar PV system; Xh is a vector

of covariates that may cause Eh to vary; and εh is a random error term. For the main regres-

sions, we use ordinary least squares for the energy expenditure outcome variable and logit

models for the (binary) energy poverty indicator variables. To check for diminishing returns

to solar PV, a squared solar PV system size variable is also included in some subsequent

regressions.

We used Stata MP v. 16.1 in the secure ABS environment DataLab to estimate the

models. Linear IV two-stage least squares (2SLS) was used for the IV regressions. We

ran the command “margins, dydx(*)” to obtain the average marginal effects of variables in

the logit model. Stata estimates marginal effects for each survey respondent by using the

values of their individual characteristics, and then takes the average of those effects. We

did not include the additional “at means” option given that the averages of the categorical

explanatory variables are not meaningful values. The average marginal effect for a binary

variable is the expected difference in the outcome variable when the value of the binary

variable changes from 0 to 1.
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4.1 Outcome variables

4.1.1 Weekly energy expenditures

HES survey respondents were asked to indicate the dollar amount of their most recent

payment for various types of residential energy and the period of time that the payment

covered. The energy types are electricity, mains gas, LPG gas, oil for heating, and firewood.

The ABS then converts the payment to an average weekly energy expenditures measure.

For solar households, the Australian Bureau of Statistics deducts the value of feed-in tariffs

(FiTs) from gross electricity expenditures to get net expenditures (which can be negative).

FiTs are per-kWh payments to compensate households for exporting solar electricity to the

grid.

Energy expenditures vary substantially over a year and across the country, for reasons

including differences in energy prices as well as in needs for cooling and heating. Although the

ABS sampled households across the 2015-16 Australian financial year, most were surveyed

in the fourth quarter of 2015 and the smallest share was surveyed in the first quarter of 2016.

This implies that energy expenditure patterns may be over-represented for some parts of the

year. We partially correct for seasonality by including quarter-by-state binary variables that

interact the household’s state or territory with the quarter of the year during which each

household was surveyed. The inclusion of these variables also helps to control for variation

in policies for solar PV, which is primarily at the state level.

4.1.2 Energy poverty indicators

This study analyses two objective indicators and one subjective indicator of energy poverty.

There are two main reasons for doing so. First, both types of indicator have limitations. The

objective energy poverty indicators are based on work in the United Kingdom and potentially

have less applicability in regions with different climates and energy requirements (Castaño-

Rosa et al., 2019). Subjective indicators may better reflect the lived experiences of households
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(Meyer et al., 2018), but are prone to social desirability bias as people may respond to survey

questions in a way that avoids the perceived stigma associated with admitting to being

energy poor (Chard and Walker, 2016; Middlemiss and Gillard, 2015). Second, objective

and subjective energy poverty indicators do not always identify the same households as

being energy poor (Middlemiss and Gillard, 2015; Price et al., 2012). The lack of a unique

energy poverty line has led to the development of many relevant metrics (Culver, 2017).5

The objective energy poverty indicators couple information from the HES on energy

expenditures with information from the SIH on income. The SIH asks about the dollar

values of different types of receipts received by members of the household, such as employee

income, profits and losses from own unincorporated businesses, and government pensions and

allowances. Questions are also asked about the length of time that the payment covered.

Subsequently, the ABS converts income to a per-week average measure. The variable does

not however include feed-in tariff payments. As noted, these are instead deducted out of

energy expenditures.

Our first energy poverty indicator is the “Low Income High Costs” (LIHC) indicator

developed by Hills (2012). For this, two conditions are used to classify households as en-

ergy poor. First, households must have “required” energy costs above the median level.

Hills (2012) measured “required” energy costs based on modelling of a household’s energy

requirements given their household characteristics and the characteristics of their dwellings

and geographical areas. As the ABS datasets do not provide sufficient information to do

this, we follow the common approach of using actual energy expenditures. Second, there is

a requirement that energy-poor households have a residual equivalised income after energy

expenditures that is below the official poverty line. Residual income is defined as disposable

income net of housing costs. Disposable income is all current receipts received by members

of the household minus income tax and levies to fund the healthcare system.

5Provided in Table B.1. of the Appendix, the correlations between the objective and subjective indicators
do not exceed 0.16.
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According to Hills (2012), energy-poor households are those for whom the following two

conditions hold:

(
energy expenditures

LIHC factor

)
h > median

(
energy expenditures

LIHC factor

)
∀ h∈H (2)

and

(
disposable income− housing costs

OECD factor

)
h −

(
energy expenditures

LIHC factor

)
h

< 60 percent of median

(
disposable income− housing costs

OECD factor

)
∀ h∈H

(3)

There are two types of equivalising factors in the above equations. The “LIHC factor” in

equations (2) and (3) is based on the work of Hills (2012). Due to differences in the degrees of

economies of scale, Hills (2012) argues that the same equivalising factors should not be used

to compare incomes and energy consumption between households. The factors for energy

expenditure should arguably exhibit less variation, as people living in the same household

can benefit from the same energy service – for example by sharing a heated room (Hills,

2012). The “OECD factor” in equation (3) refers to the modified OECD equivalence scale

and is used to equivalise household incomes. The scale was designed to enable comparisons

of households of different sizes and with members of different ages. For this scale, the first

adult in each household is assigned a value of 1.0, each subsequent adult receives 0.5, and

each dependent child (under 15 years of age) receives 0.3. Table B.2. of the Appendix

compares the LIHC factors with the modified OECD equivalence scale.

As a second energy poverty indicator we use the widely-applied “Ten Percent Rule”

(TPR), which classes a household as experiencing energy poverty if it must pay more than

ten percent of its income to acquire a necessary level of energy services (Boardman, 1991).

Our application of the TPR adjusts (actual) energy expenditures and disposable incomes
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using the LIHC factors and OECD factors, respectively. Households are counted as energy

poor if the below condition applies:

(
energy expenditures/LIHC factor

disposable income/OECDfactor

)
h > 10 percent (4)

We also count households who have disposable (net) incomes less than or equal to AUS$0

and positive energy expenditures as being energy poor according to the TPR.

The subjective indicator that we use refers to whether a household faces financial dif-

ficulties preventing them from paying utility bills on time. The HES asked respondents

“Over the past year, have any of the following happened to you/your household because of

a shortage of money?” We focus on the option “Could not pay electricity, gas or telephone

bills on time.” The responses are coded as either “yes” or “no”. Although telephone bills are

not an energy expenditure, energy costs tend to be a greater concern for many Australian

households as some low-cost mobile phone plans are available. The indicator is relevant for

this study as one of the key reasons for households to install solar PV is to reduce their

energy bills. The HES did not ask a similar question focused only on energy bills.

While our study applies some of the most commonly used indicators to measure energy

poverty, the concept is multifaceted and our indicators do not capture all aspects. For

example, research in developing countries often focuses on whether households have access

to basic energy services such as cooking and lighting, based on Sen’s capability approach

(Nussbaumer et al., 2013; Pelz, Pachauri, and Groh, 2018). Recent work in Australia has

also highlighted that disconnection rates from the electricity grid are an important dimension

of energy insecurity (Longden et al., 2022).

Most Australian households do not experience energy poverty, consistent with high living

standards on average. As per the ABS surveys. around 12.5 percent and 13.1 percent of all

households experienced energy poverty based on the LIHC and TPR indicators in 2015-16,

respectively. Figure 1 indicates that households with solar PV are among those less likely to

experience energy poverty. However the effects of solar PV on energy poverty are likely to
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be smaller than the unconditional associations in Figure 1 given other relevant differences

between solar and non-solar households such as income and wealth levels.

[Insert Figure 1: Households experiencing energy poverty, by solar PV status]

4.2 Treatment variables

For the main analysis, the treatment variable is the size of a household’s solar PV system in

kilowatts. Figure 2 shows a histogram of the solar PV system sizes for households with solar

PV. The figure uses bins of 2 kW to align with ABS privacy requirements for sample size.

In 2015, the Australian residential sector consumed 59,273 GWh of electricity (International

Energy Agency, 2022). After dividing by the number of households in Australia in 2015-16,

the average household consumed about 6,600 kWh of electricity per annum. This compares

to an average capacity for the solar households in Figure 2 of 3.21 kW and a standard

deviation of 1.46 kW. Using the minimum and maximum values of average daily production

of solar PV systems listed in Table B.3 of the Appendix, this translates into approximately

4,000–6,000 kWh of solar generation per solar household per year, depending on location.

[Insert Figure 2: Histogram of solar PV capacities for solar households in estimation

sample]

As a second treatment variable we use the daily expected solar PV output from a system.

This is calculated by multiplying the capacity of each solar household’s system with the

average output per kW per day in the closest city in Table B.3 of the Appendix. The latter

is based on the simple average of values reported in 2012 and 2020 by the Clean Energy

Council (2012; 2020). The values are based on real-world rather than lab conditions. We

use GIS to match the postal areas of each household with the closest city. The unit of the

expected output is kWh per day (system size in kW multiplied by an output factor in kWh

per kW per day). The average value of the variable for the households with solar in the

study is 13.56 kWh per day. Although tools exist to estimate expected output at a more

disaggregated geographical level, full accuracy would rely on detailed features of each solar
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PV system such as the degree of rooftop shading and the quality of the system’s components.

The ABS dataset does not provide information on these features.

The dataset also does not contain information on when households’ panels were installed.

One issue is that some panels may have been installed in the immediate lead-up to the

surveys. Consequently, insufficient time may have elapsed for these solar panels to affect the

energy expenditures and energy poverty statuses of the households. However, only around

1.5 percent of Australian households installed solar PV panels in 2015-16, so this issue is not

relevant for many households. 6

4.3 Control variables

Solar and non-solar households likely differ in key ways. Omitted variable bias is a threat

if there are unobserved characteristics in the error term that are correlated with both a

household’s solar PV system size (and whether it has solar PV more generally) and the

outcome variable. The regressions therefore include several control variables related both to

a household’s socioeconomic characteristics and the features of their dwelling. Descriptive

statistics for these variables are provided in Appendix A. Importantly, the models control

for household net wealth. Households with higher net wealth tend to have larger solar PV

systems and to be less likely to experience energy poverty on average, all else constant (Best

and Burke, 2019; Best, Burke, and Nishitateno, 2019).7

Socioeconomic characteristics include variables for the number of people in a household,

the inverse hyperbolic sine (IHS) of household net wealth, the IHS of household disposable

6In Australia, there were around 8,963,300 households in 2015-16 (Australian Bureau of Statistics, 2019).
In 2015, there were 141,500 new small-scale solar PV panel installations while in 2016 there were 132,697
(Clean Energy Regulator, 2022).

7The variance inflation factors are below the threshold of 10 for all variables. The correlation between
the IHS of household net wealth and the IHS of household disposable income is also only 0.18. The low
level of correlation is related to many older Australians having high levels of housing wealth including in the
family home, which is a non-income generating asset if no rooms are rented out, whereas income levels tend
to be lower for older ages (Tapper and Fenna, 2019). Thus, multi-collinearity is unlikely to be an issue for
the estimated results of this study.
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income, and the age of the survey respondent.8 Binary variables include whether the house-

hold’s main income source is government pensions and allowances, the employment status

of the household respondent, and whether the respondent is female. Household composition

variables, such as whether a survey respondent lives by themselves or with a partner or chil-

dren, are also accounted for. There are also separate binary variables for whether at least

one member of a household: is 65 years of age or older, has a disability and/or long-term

illness, has a university-level education, and/or was born in Australia.

Net wealth is given by total assets minus total liabilities. The calculation is based on

international guidelines for measuring statistics at the household level (Australian Bureau

of Statistics, 2017), with survey respondents being asked for the values of various categories

of assets and liabilities. Ownership of solar panels is considered indirectly in the net wealth

measure via the value of the home. Any loans incurred to pay for the solar panels are part

of the household’s liabilities. We take the IHS of the household net wealth and disposable

income variables to reduce the skewness of the distributions and retain zero and negative

values.

Dwelling characteristics include the number of bedrooms in a dwelling, the type of housing

tenure, and the type of dwelling. The types of housing tenure are whether the dwelling is

rented, owned with a mortgage, owned without a mortgage, or occupied via some other means

(measured using binary variables). In Australia, households who rent their homes typically

pay for their own energy expenditures (rather than the landlord). Dwelling characteristics

also include the average monthly solar exposure for the year and yearly numbers of CDDs

and HDDs for the dwelling’s postal area, plus binary variables for whether the location is

regional or remote.

8The IHS is given by: x̃ = ln
(
x+
√
x2 + 1

)
.
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4.4 Instrumental variable approach

There may be differences between households with and without solar PV that are difficult

to observe and measure. These include differences in values concerning the environment,

in access to financial and technical knowledge about solar PV, or in demand for energy

autonomy (Alipour et al., 2020). If these variables are also correlated with the outcome

variables, the estimated impacts of solar PV on energy expenditures and energy poverty

may be biased. Another potential estimation issue is reverse causality given that a major

driver for uptake of solar panels has been concern about high electricity costs.

We thus pursue an IV strategy, instrumenting a household’s solar PV capacity with the

average solar PV capacity of households with similar characteristics who live in the same

state or territory but outside the household’s statistical area level 3 (SA3). The instrument

exploits the fact that energy prices and policies for solar PV differ across state and territory

boundaries, so similar households in different regions within a state face similar incentives

to install. The instrument varies by household, so is not collinear with the quarter-by-state

dummies.

To construct the instrument, we group households into one of 24 categories based on

their household net wealth (in quartiles), type of dwelling (fully detached, semi-detached,

or other), and housing tenure (homeowner, or other). For example, one category includes

households who are in the top wealth quartile and own their fully-detached home, while

another includes those in the bottom wealth quartile, who do not own their home, and live

in a semi-detached building. The value of the instrument for each household is the average

solar PV system size for households who are in the same category and live in the same state

but not the same SA3.

This IV approach seeks to remove the impact of omitted variable bias and reverse causal-

ity within each local area. There are some possible issues with satisfying the exclusion

restriction, as omitted variables may exist that are correlated with the solar uptake of sim-

ilar households. The results are robust to using a regional aggregation other than SA3s.
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SA3s provides a good balance between the size of the region and the number of households

that were unable to be matched with similar households outside their local area. There

are 358 SA3s in Australia, with populations generally between 30,000 and 130,000 people

(Australian Bureau of Statistics, 2016).

5 Results

5.1 Main results

We commence by presenting OLS and logit regressions to examine the impact of solar PV

capacity on energy poverty. Table 1 provides the results. They indicate that a one-kilowatt

increase in the size of a household’s solar PV system is associated with a reduction in weekly

energy expenditures of around A$3.73 on average, holding the control variables constant. It

is also associated with a lower likelihood that a household will experience objective measures

of energy poverty, by around 1.7 percentage points per kilowatt for the LIHC indicator and

1.8 percentage points per kilowatt for the TPR indicator on average. These impacts are large

given the underlying probability of experiencing energy poverty is quite low in the sample.

No significant effect is found for the subjective energy poverty indicator.

[Insert Table 1: OLS and logit regressions for impact of solar PV capacity on energy

poverty]

The IV results are presented in Table 2. The first-stage results suggest that the in-

strument is positively correlated with a household’s solar PV system size. The instrument

satisfies the weak IV test of Montiel Olea and Pflueger (2013) for all dependent variables.9

As an additional test of weak instruments, we compare the minimum eigenvalue statistic of

the instrument with the Stock and Yogo values for the size of a nominal 5 percent Wald

test. The minimum eigenvalue statistic was first proposed by Cragg and Donald (1993) for a

9The effective F-statistic is larger than the threshold critical value with τ (the fraction of the worst-case
bias benchmark) = 5 percent and α (the level of statistical significance) = 1 percent in all cases.
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test of under-identification. It is larger than the 10 percent size threshold for all dependent

variables. Compared to the OLS and logit results in Table 1, the IV results typically have

the same sign and statistical significance. The effect of solar PV on the “unable to pay

bills on time” indicator becomes statistically significant, indicating a 3.5 percentage point

decrease per kilowatt on average, all else equal.

[Insert Table 2: Instrumental variable results for impact of solar PV capacity on energy

poverty]

5.2 Effects for low-wealth households

Table 3 explores whether the observed reductions in energy expenditures and energy poverty

hold specifically for low-wealth households. To do so, we re-ran the regressions in Table

1 including an interaction between the system size variable and a binary variable equal to

one if the household is in the lowest quartile of net wealth and zero otherwise. We also

replaced the IHS net wealth variable with the binary low-wealth variable as a control. We

used OLS and logit for these regressions due to difficulties in finding a plausible instrument

for the interaction of the household net wealth variable with the size of a household’s solar

PV system.

For the energy expenditures variable as well as the objective indicators, no statistically

significant difference due to household net wealth is found. However Table 3 provides evi-

dence that low-wealth households with solar PV are more likely than low-wealth households

without solar PV to report being energy poor based on the “unable to pay bills on time”

indicator. Specifically, having solar PV increases the likelihood that a low-wealth household

faces difficulties in paying their bills on-time by 3 percentage points per kilowatt (the sum

of the two coefficients). This is an interesting finding given the reduction in weekly energy

expenditures for these households observable in the first column.10 One explanation may be

10The null hypothesis of a two-sided t-test of bsystem size+bsystem size∗low wealth = 0 for the “weekly energy
expenditures” regression is rejected, with a p-value of 0.00.
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that some low-wealth households have insufficient funds to pay their bills after purchasing a

solar system.

[Insert Table 3: OLS and logit regressions for heterogeneity analysis by low-wealth status]

5.3 Potential non-linearities

Table 4 explores non-linearities in the impacts of solar PV system size by including a squared

term for a household’s solar PV capacity. To avoid the need to include two instrumental

variables, we again estimate the quadratic specifications using OLS and logit models. The

results suggest that there are diminishing returns to solar PV capacity. Based on the “weekly

energy expenditures” regression, the turning point is at a capacity of 5.37 kW.11 As rela-

tively few households had systems larger than this in 2015-16, the relationship between solar

PV capacity and energy expenditures thus slopes downwards at a decreasing rate over the

relevant in-sample range of kilowatt values.

[Insert Table 4: OLS and logit regressions for impact of solar PV capacity on energy

poverty, testing for non-linearities]

5.4 Solar output

As an alternative treatment variable, we consider the estimated daily solar PV output of

each household’s system. Given the solar variable appears only once on the right-hand side,

we estimate using IV. We apply a slight variation to our IV approach: rather than using

the average capacity of similar households as the instrument, we now use the average daily

per-household system output of similar households.

Table 5 provides the results. The instrument is positively correlated with the system

size variable and satisfies the weak instruments test of Montiel Olea and Pflueger for all

dependent variables. The minimum eigenvalue statistic is larger than the 10 percent size

threshold for all dependent variables. The estimated coefficients are similar in sign to the

11(−(−6.672)/(2(0.621) = 5.37
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results in Tables 1 and 2. A kWh per day increase in the output of a household’s solar PV

system predicts a reduction in weekly energy expenditures of about 77 cents on average and

reductions in all energy poverty indicators. The results are also quite similar if using OLS

and logit models, although the coefficient for the “unable to pay bills on time” indicator is

only statistically significant when using the IV approach.

[Insert Table 5: Instrumental variable results for impact of estimated solar PV output

on energy poverty]

5.5 Additional estimations and results

Appendix C provides the full results for Tables 1–5, including the coefficients for the other

explanatory variables. The estimated coefficients for the controls are similar across specifi-

cations and align with expectations. For example, higher disposable incomes are associated

with households spending more on energy bills but reduced likelihoods of energy poverty

on average. Higher household net wealth predicts higher energy expenditures and a lower

likelihood of reporting being unable to pay bills on-time, on average. However the impact

of household net wealth on the objective measures of energy poverty is not consistently

significant.

Other factors such as the respondent having completed tertiary education and living in

an apartment predict reductions in the likelihood of experiencing energy poverty on average.

For the former, higher levels of education may be associated with better understanding of how

to reduce energy bills, while for the latter, apartments typically need less energy for heating

and cooling if they are well-insulated from external elements by connecting apartments.

Conversely, having more household members or members with long-term medical conditions

is associated with higher energy expenditures and a higher propensity of energy poverty on

average.

Appendix D presents other robustness checks, altering the specifications used in Table

1. We use OLS and logit regressions as a baseline approach. In Table D.1, the sample is
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split by whether households own their home (panel A) or rent (panel B).12 During this year,

only around 4 percent of households with rooftop solar were renters. While some Australian

renters have solar PV, the share is considerably lower than for homeowners in part because

property investors feel they are not always able to benefit as much from having solar PV as

they would if they lived in the property (Best, 2022). The share was higher for households

with low net wealth: 63 percent of the households in the lowest net wealth quartile who had

solar PV rented their homes.

The results in Table D.1 for homeowners are similar to the main results in Tables 1 in sign,

magnitude, and statistical significance. The results in panel B for renters are also similar for

the weekly energy expenditures and objective energy poverty indicator variables although

not always statistically significant. They are also less precisely estimated, as indicated by

the larger standard errors.

Table D.2 excludes households in New South Wales, the Australian Capital Territory,

and the Northern Territory, as early adopters in these regions tend to have gross meters

(Poruschi et al., 2018). Other states and territories, and recent versions of feed-in tariffs

in NSW, the ACT, and the NT, rely on net metering. Households on early feed-in tariff

arrangements with gross meters in NSW and the ACT receive relatively large per-kWh feed-

in tariff payments, potentially resulting in larger reductions in their net energy expenditures.

The point estimates in Table D.2 are similar to those in Table 1, both in magnitude and

statistical significance. This similarity may relate to low numbers of households with gross

meters in the sample.

Table D.3 highlights results for alternative energy poverty indicators. In the main esti-

mations, the poverty line for the LIHC indicator was calculated at 60 percent of equivalised

residual income, consistent with Hills (2012). As a robustness check, we instead use a poverty

line equal to 50 percent of median equivalised residual median income. There is also contro-

versy about the setting of the threshold for the Ten Percent Rule given that it is an arbitrary

12Based on a t-test of equality of means, renters were more likely to experience energy poverty in 2015-16.
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cut-off. We follow Churchill and Smyth (2020) and use two other cut-offs: 5 percent and

15 percent. The 5 percent cut-off counts more households as energy poor, whereas the 15

percent cut-off counts fewer households as energy poor. The results are similar to those in

Table 1 in sign and statistical significance.

6 Conclusion and policy implications

This paper provides a quantitative assessment of the impact of having solar PV on the like-

lihood of energy poverty among Australian households. Efforts to reduce energy poverty in

colder-climate countries such as the United Kingdom have largely concentrated on initiatives

aimed at improving energy efficiency in heating and installing insulation. The results in this

paper suggest that government policies that boost access to solar PV are likely to be impor-

tant in reducing the likelihood that households experience energy poverty in countries such

as Australia, all else equal. The benefits increase at a diminishing rate with system size.

Having solar PV is associated with lower likelihoods of experiencing energy poverty based

on both the objective and subjective indicators used in this study, although the results for

the subjective indicator are not always statistically significant. Using the LIHC and TPR

indicators, there is a reduction in the likelihood that a household will experience energy

poverty by around 1.5–2.5 percentage points per kilowatt on average. These effects are quite

large considering the low underlying probabilities of energy poverty in Australia and reveal

just how transformative solar PV can be. The estimated impacts of solar PV on households

being unable to pay their bills on time are less robust across specifications.

For households in the lowest quartile of net wealth, an interesting finding is that having

solar PV is associated with a lower likelihood of experiencing the objective measures of

energy poverty but a greater likelihood of being unable to pay bills on time, all else equal.

However the relevant sub-sample is quite small; only 4 percent of households in the lowest

net wealth quartile of the sample had solar PV in 2015-16. Future research could examine
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the impacts of solar PV on energy poverty as more low-wealth households gain access to the

technology.

The estimates also suggest that having solar panels has a sizeable effect in reducing

energy expenditures. The solar households in the dataset have an average system size of

around 3.21 kilowatts. Non-solar households have average weekly energy expenditures of

A$40.56. Based on the average system size, a A$2.06 per kilowatt reduction in average

weekly energy bills amounts to around A$6.63, or 16 percent of the average weekly energy

expenditures of non-solar households.13 Per year, the average solar household thus benefits

from an approximately A$344.55 reduction in energy bills.14 This is smaller than the finding

by the Australian Competition and Consumer Commission (ACCC) that solar households

spent approximately A$538 less on net electricity bills (inclusive of feed-in tariffs) than non-

solar households on average over 2016-17 (Australian Competition & Consumer Commission,

2018), or about A$530 when converted to 2015-16 dollars. The method used in the current

paper is based on household-level survey data and examines energy use rather than electricity

consumption. Our results incorporate any rebound effects in electricity use or in use of other

types of residential energy such as natural gas.

A limitation of the study is our lack of instrumental variables for the regressions with

interaction terms and quadratics in Tables 3–4. Consequently, endogeneity issues may remain

in these specifications. Future work could explore ways to instrument these regressions or

test the robustness of the results to the use of other econometric specifications. Results in

the simpler specification in Table 1 remain relatively similar in an IV estimation (see Table

2).

The overall findings suggest that solar PV adoption by households in Australia is as-

sociated with reduced energy expenditures and a lower probability of experiencing energy

poverty. However governments looking to extend access to vulnerable households through

targeted subsidies also need to consider trade-offs with other spending objectives and also

13Based on Table 5, −6.672(4.21− 3.21) + 0.621(4.212 − 3.212) = −2.06.
14The calculated yearly reduction in energy bills is A$413.59 using the IV estimate.
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how subsidies are funded. Future research could assess whether the benefits of specific gov-

ernment policies that subsidise solar PV for energy-poor households outweigh the costs and

also the distributional implications of these policies. Future work might also examine the

poverty reduction benefits from installing insulation in countries that regularly experience

hot temperatures such as Australia. Comparative cost-benefit analyses of investments in

solar PV and in insulation would also be useful.
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Figure 1: Households experiencing energy poverty, by solar PV status

Source: 2015-16 Household Expenditure Survey and Survey of Income and Housing. Data are for
our estimation sample.
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Figure 2: Histogram of solar PV capacities for solar households in estimation sample

Source: 2015-16 Household Expenditure Survey and Survey of Income and Housing.

Table 1: OLS and logit regressions for impact of solar PV capacity

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

System size (kW) -3.727*** -0.017*** -0.018*** -0.003
(0.224) (0.004) (0.003) (0.003)

R2 0.284 0.245 0.371 0.206
Obs 9,900 9,900 9,870 9,900

Notes: Regressions control for all covariates in section 4.3. The “weekly expenditures” regression uses
OLS. The binary regressions use logit models, with average marginal effects presented. Standard errors
are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues.
Estimated coefficients for other covariates are shown in Table C.1. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2: Instrumental variable results for impact of solar PV capacity

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

System size (kW) -2.471** -0.024* -0.016 -0.035***
(1.159) (0.013) (0.013) (0.011)

First-stage coeff. 0.726*** 0.726*** 0.726*** 0.726***
(0.055) (0.055) (0.055) (0.055)

Effective F-statistic 172.555 172.555 172.555 172.555
Minimum eigenvalue statistic 283.465 283.465 283.465 283.465
Stock & Yogo critical value 16.38 16.38 16.38 16.38
Obs 9,874 9,874 9,874 9,874

Notes: Instrument is average solar PV capacity of similar households. 2SLS is used. Robust standard
errors are in brackets. Regressions control for all covariates in section 4.3. The effective F-statistic is from
the Montiel Olea and Pflueger test of weak instruments. The Stock and Yogo critical values are for 2SLS
size of nominal 5 percent Wald tests at the 10 percent threshold level. Minimum eigenvalue statistics
and Stock and Yogo critical values are from regressions without robust standard errors. Estimated
coefficients for other covariates are shown in Table C.2. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 3: OLS and logit regressions for heterogeneity analysis by low-wealth status

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

System size (kW) -3.755*** -0.017*** -0.018*** -0.004**
(0.230) (0.004) (0.003) (0.002)

System size (kW) * 0.685 -0.007 0.000 0.034**
low-wealth (binary) (0.814) (0.014) (0.010) (0.016)

R2 0.280 0.244 0.371 0.143
Obs 9,900 9,898 9,871 9,900

Notes: Regressions control for all covariates in section 4.3. The “weekly expenditures” regression uses
OLS. The binary regressions use logit models, with average marginal effects presented. Standard errors
are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues.
Estimated coefficients for other covariates are shown in Table C.3. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: OLS and logit regressions for impact of solar PV capacity, testing for
non-linearities

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

System size (kW) -6.672*** -0.037*** -0.033*** -0.009
(0.553) (0.007) (0.006) (0.006)

System size (kW) squared 0.621*** 0.004*** 0.003*** 0.001
(0.105) (0.001) (0.001) (0.001)

Turning point (kW) 5.372 4.625 5.500 4.500
R2 0.284 0.246 0.372 0.207
Obs 9,900 9,900 9,870 9,900

Notes: Regressions control for all covariates in section 4.3. The “weekly expenditures” regression uses
OLS. The binary regressions use logit models, with average marginal effects presented. Standard errors
are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues.
Estimated coefficients for other covariates are shown in Table C.4. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5: Instrumental variable results for impact of estimated solar PV output

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

System output -0.771*** -0.006* -0.005* -0.008***
(kWh per day) (0.261) (0.003) (0.003) (0.003)

First-stage coeff. 0.736*** 0.736*** 0.736*** 0.736***
(0.055) (0.055) (0.055) (0.055)

Effective F-statistic 181.529 181.529 181.529 181.529
Minimum eigenvalue statistic 322.982 322.982 322.982 322.982
Stock & Yogo critical value 16.38 16.38 16.38 16.38
Obs 9,874 9,874 9,874 9,874

Notes: Instrument is average solar PV capacity of similar households. 2SLS is used. Robust standard
errors are in brackets. Regressions control for all covariates in section 4.3. The effective F-statistic is from
the Montiel Olea and Pflueger test of weak instruments. The Stock and Yogo critical values are for 2SLS
size of nominal 5 percent Wald tests at the 10 percent threshold level. Minimum eigenvalue statistics
and Stock and Yogo critical values are from regressions without robust standard errors. Estimated
coefficients for other covariates are shown in Table C.5. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Supporting information

Appendix A

Table A.1: Descriptive statistics

Variable name Solar Non-solar
Mean S.D. Mean S.D.

Variables of interest
Capacity of solar system (kW) System size 3.21 1.46 0.00 0.00
Expected output (kWh per day) System output 13.56 6.37 0.00 0.00

Respondent characteristics
Age AGER 58.15 14.45 53.55 17.62
Female FEMALE 0.39 0.45
Employeda EMPLOYED 0.57 0.58
Unemployeda UNEMPLOYED 0.01 0.03

Household characteristics
Number of people PERSONSH 2.53 1.24 2.31 0.01
IHS of disposable income (weekly, in A$) IHSINCOME 7.82 1.06 7.68 0.96
IHS of net wealth (in A$) IHSWEALTH 14.23 1.32 13.06 3.08
Couple with children householdb COUPLECHILD 0.24 0.21
Single parent householdb LONEPARENT 0.04 0.07
Multiple family householdb MULTIPLEFAM 0.01 0.01
Lone person householdb LONEPERSON 0.15 0.31
Other household typeb OTHERFAM 0.13 0.12
> 1 person aged 65 or older OLDER 0.44 0.33
> 1 person born in Australia BORNAUS 0.78 0.67
> 1 person with long-term health condition DISABILITY 0.52 0.47
> 1 person with university-level education EDUCHIGH 0.37 0.28
Main income source is government transfers GOVERNMENT 0.29 0.34

Dwelling characteristics
Number of bedrooms NUMBED 3.48 0.79 2.99 0.94
Housing tenure = homeowner with mortgagec OWNERM 0.44 0.33
Housing tenure = renterc RENTER 0.04 0.34
Housing tenure = otherc TENOTHER 0.01 0.02
Dwelling = semi-detachedd DWELSSEMI 0.00 0.00
Dwelling = apartment/flatd DWELSFLAT 0.04 0.13
Dwelling = other typed DWELSOTHER 0.01 0.12

Location characteristics
Household lives in remote/very remote areae REMOTE 0.02 0.02
Household lives in regional areae REGIONAL 0.29 0.25
Av. solar exposure per year in postal area AVSOLAR 16.98 1.68 16.49 1.82
Av. number CDDs per year in postal area AVCDDS 0.01 0.15 0.04 0.26
Av. number HDDs per year in postal area AVHDDS 5.73 4.18 6.13 3.84

Obs 1,563 8,337

Notes: Covariates also include survey quarter-by-state binary variables. Variables with means and standard deviations are
continuous variables; variables with means only are binary. Reference categories are: a not in the labour force, b couple
only, c homeowner no mortgage (owns home outright), d fully-separated house, e household lives in a major city.
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Appendix B

Table B.1: Correlations between energy poverty indicators in the sample

Low Income Ten-Percent Unable to pay
High Costs -Rule bills on time

Low Income High Costs 1.00
Ten Percent Rule 0.61 1.00
Unable to pay bills on time 0.16 0.14 1.00

Table B.2: LIHC adjustment factors versus modified OECD equivalence scale

Household type LIHC factor OECD factor

Couple with dependent children (2 adults, 2 children) 1.15 2.30
Couple without dependent children (2 adults) 1.00 1.50
Lone parent (1 adult, 2 children) 0.94 1.60
Single person (1 adult) 0.82 1.00
Other multi-person household (4 adults) 1.07 2.50

Notes: Examples of household types in brackets. These examples are used to calculate the OECD factors.
The LIHC factors are the same for any expression of that household type.

Table B.3: Average daily production of solar PV systems, in kilowatt hours

City Daily output from 1kW system size (kWh)

Sydney 3.95
Melbourne 3.65
Canberra 4.25

Cairns 4.50
Brisbane 4.35

Perth 4.55
Adelaide 4.20
Hobart 3.45
Darwin 4.80

Alice Springs 5.15

Notes: Averages of production from Clean Energy Council (2012) and (2020).

40



Appendix C

Table C.1: OLS and logit regressions for impact of solar PV capacity

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

System size -3.727*** 0.224 -0.017*** 0.004 -0.018*** 0.003 -0.003 0.003
AGER 0.143*** 0.025 -0.000 0.000 0.001* 0.000 -0.001*** 0.000
FEMALE -0.891* 0.496 0.012* 0.006 0.005 0.006 0.010 0.006
EMPLOYED 1.635** 0.828 -0.003 0.012 0.005 0.010 0.017* 0.010
UNEMPLOYED 3.566* 1.961 0.011 0.016 0.025* 0.014 0.028** 0.013
PERSONSH 4.493*** 0.522 0.040*** 0.005 0.064*** 0.005 0.012*** 0.004
IHSINCOME 1.309*** 0.413 -0.111*** 0.014 -0.245*** 0.008 -0.011*** 0.003
IHSWEALTH 0.378*** 0.097 0.001 0.001 0.001 0.001 -0.004*** 0.001
COUPLECHILD 1.262 1.278 0.001 0.014 0.003 0.014 0.014 0.012
LONEPARENT -0.523 1.150 0.016 0.013 0.038*** 0.012 0.062*** 0.011
MULTIPLEFAM 0.084 3.500 -0.049 0.034 0.033 0.028 0.010 0.029
LONEPERSON -4.252*** 0.820 -0.004 0.010 -0.057*** 0.009 0.025** 0.010
OTHERFAM -0.895 0.860 -0.026** 0.012 0.009 0.011 0.025** 0.011
OLDER -3.312*** 0.859 -0.008 0.012 -0.015 0.011 -0.076*** 0.012
BORNAUS 2.551*** 0.534 -0.011 0.007 0.004 0.007 0.020*** 0.008
DISABILITY 1.301** 0.546 0.024*** 0.007 0.016** 0.006 0.050*** 0.006
EDUCHIGH -1.357** 0.568 -0.027*** 0.008 -0.019*** 0.007 -0.053*** 0.007
GOVERNMENT -3.684*** 0.760 0.082*** 0.011 -0.015* 0.009 0.054*** 0.010
NUMBED 4.746*** 0.374 0.026*** 0.004 0.030*** 0.004 -0.006 0.004
OWNERM 3.812*** 0.751 0.030*** 0.010 0.010 0.009 0.093*** 0.011
RENTER 2.490*** 0.780 0.068*** 0.010 0.011 0.009 0.122*** 0.011
TENOTHER -0.119 1.932 0.020 0.022 0.062*** 0.017 0.083*** 0.021
DWELSSEMI -1.860** 0.762 -0.016 0.010 -0.017* 0.010 -0.027*** 0.009
DWELSFLAT -2.575*** 0.819 -0.054*** 0.014 -0.042*** 0.014 -0.034*** 0.011
DWELSOTHER 1.328 7.126 -0.036 0.065 -0.020 0.058 -0.020 0.052
REMOTE -4.253 2.959 -0.019 0.036 0.034 0.027 0.039** 0.020
REGIONAL -2.284*** 0.771 0.015* 0.009 0.003 0.008 0.007 0.008
AVSOLAR 1.629*** 0.463 0.009 0.005 0.011** 0.005 -0.003 0.004
AVCDDS -1.618 1.867 -0.006 0.023 -0.023 0.022 -0.022 0.024
AVHDDS 0.412*** 0.142 0.002 0.002 0.004*** 0.001 0.000 0.002

R2 0.284 0.245 0.371 0.206
Obs 9,900 9,900 9,870 9,900

Notes: Variable names and reference categories are as in Table A.1. Regressions also include quarter-by-state controls. The
“weekly expenditures” regression uses OLS. The binary regressions use logit models, with average marginal effects presented.
Standard errors are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table C.2: Instrumental variable results for impact of solar PV capacity

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

System size -2.471** 1.159 -0.024* 0.013 -0.016 0.013 -0.035*** 0.011
AGER 0.131*** 0.025 -0.001*** 0.000 -0.001 0.000 -0.001*** 0.000
FEMALE -0.795 0.508 0.014** 0.007 0.008 0.007 0.009 0.006
EMPLOYED 1.385* 0.841 -0.037*** 0.012 -0.035*** 0.012 -0.019* 0.010
UNEMPLOYED 3.509* 1.986 0.064** 0.032 0.147*** 0.032 0.072** 0.031
PERSONSH 4.428*** 0.520 0.054*** 0.006 0.072*** 0.007 0.022*** 0.006
IHSINCOME 1.403*** 0.416 -0.101*** 0.008 -0.146*** 0.011 -0.012*** 0.004
IHSWEALTH 0.368*** 0.101 0.003* 0.002 0.003* 0.001 -0.007*** 0.002
COUPLECHILD 1.156 1.290 -0.047*** 0.014 -0.063*** 0.014 -0.015 0.015
LONEPARENT -0.694 1.159 0.028 0.018 0.049*** 0.018 0.124*** 0.019
MULTIPLEFAM 0.033 3.491 -0.099*** 0.036 -0.053 0.042 -0.031 0.034
LONEPERSON -3.959*** 0.871 0.007 0.011 -0.012 0.011 0.015 0.010
OTHERFAM -0.924 0.872 -0.044*** 0.010 -0.038*** 0.010 0.001 0.011
OLDER -3.486*** 0.872 -0.034*** 0.012 -0.047*** 0.011 -0.065*** 0.010
BORNAUS 2.371*** 0.541 -0.013* 0.008 -0.005 0.008 0.023*** 0.006
DISABILITY 1.445*** 0.553 0.023*** 0.007 0.014** 0.007 0.054*** 0.007
EDUCHIGH -1.250** 0.579 -0.016** 0.007 -0.018** 0.007 -0.047*** 0.006
GOVERNMENT -3.827*** 0.775 0.097*** 0.011 0.025** 0.011 0.044*** 0.009
NUMBED 4.383*** 0.415 0.028*** 0.005 0.028*** 0.005 0.002 0.004
OWNERM 3.676*** 0.764 0.026*** 0.009 -0.008 0.009 0.047*** 0.007
RENTER 2.539*** 0.912 0.066*** 0.012 -0.004 0.012 0.083*** 0.011
TENOTHER 0.525 2.033 0.013 0.022 0.079*** 0.026 0.017 0.020
DWELSSEMI -1.420* 0.780 -0.019* 0.011 -0.018* 0.010 -0.034*** 0.010
DWELSFLAT -3.116*** 0.827 -0.047*** 0.012 -0.019* 0.011 -0.044*** 0.013
DWELSOTHER 1.017 7.267 -0.014 0.057 -0.014 0.046 -0.013 0.055
REMOTE 0.379 2.770 -0.008 0.024 0.056** 0.027 0.023 0.024
REGIONAL -2.021*** 0.675 0.003 0.008 0.001 0.008 0.010 0.008
AVSOLAR 0.140 0.221 0.002 0.003 0.001 0.003 0.002 0.002
AVCDDS 4.436*** 1.224 0.011 0.013 0.024** 0.012 -0.045*** 0.012
AVHDDS 0.956*** 0.078 0.006*** 0.001 0.007*** 0.001 0.001 0.001

First-stage 0.726*** 0.055 0.726*** 0.055 0.726*** 0.055 0.726*** 0.055
coeff.
Effective
F-statistic

172.555 172.555 172.555 172.555

Minimum
eigenvalue
statistic

283.465 283.465 283.465 283.465

Stock & Yogo
critical value

16.38 16.38 16.38 16.38

Obs 9,874 9,874 9,874 9,874

Notes: Variable names and reference categories are as in Table A.1. Regressions also include quarter-by-state controls.
Instrument is average solar PV capacity of similar households. 2SLS is used. Robust standard errors are in brackets. The
effective F-statistic is from the Montiel Olea and Pflueger test of weak instruments. The Stock and Yogo critical values are
for 2SLS size of nominal 5 percent Wald tests at the 10 percent threshold level. Minimum eigenvalue statistics and Stock
and Yogo critical values are from regressions without robust standard errors. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.3: OLS and logit regressions for heterogeneity analysis by low-wealth status

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

System size -3.755*** 0.230 -0.017*** 0.004 -0.018*** 0.003 -0.004** 0.002
System size *
low-wealth

0.685 0.814 -0.007 0.014 0.000 0.010 0.034** 0.016

AGER 0.154*** 0.025 0.000 0.000 0.001** 0.000 -0.001*** 0.000
FEMALE -0.856* 0.496 0.012* 0.006 0.005 0.006 0.010 0.006
EMPLOYED 1.645** 0.832 -0.002 0.012 0.004 0.010 -0.017* 0.010
UNEMPLOYED 3.514* 1.958 0.011 0.016 0.025* 0.014 0.071** 0.030
PERSONSH 4.463*** 0.522 0.040*** 0.005 0.064*** 0.005 0.021*** 0.007
IHSINCOME 1.374*** 0.414 -0.111*** 0.014 -0.245*** 0.008 -0.010** 0.004
low-wealth -1.229 0.885 0.011 0.012 -0.009 0.011 0.075*** 0.013
COUPLECHILD 1.387 1.277 0.002 0.014 0.003 0.014 -0.012 0.015
LONEPARENT -0.538 1.147 0.015 0.013 0.038*** 0.012 0.124*** 0.019
MULTIPLEFAM 0.193 3.499 -0.049 0.034 0.033 0.028 -0.030 0.034
LONEPERSON -4.329*** 0.819 -0.005 0.010 -0.057*** 0.009 0.021** 0.009
OTHERFAM -0.909 0.862 -0.027** 0.012 0.009 0.011 0.003 0.011
OLDER -3.328*** 0.861 -0.008 0.012 -0.015 0.011 -0.069*** 0.010
BORNAUS 2.551*** 0.534 -0.011 0.007 0.004 0.007 0.026*** 0.006
DISABILITY 1.287** 0.545 0.023*** 0.007 0.016*** 0.006 0.053*** 0.007
EDUCHIGH -1.359** 0.569 -0.027*** 0.008 -0.019*** 0.007 -0.045*** 0.006
GOVERNMENT -3.972*** 0.759 0.081*** 0.011 -0.015* 0.009 0.046*** 0.009
NUMBED 4.775*** 0.375 0.027*** 0.004 0.030*** 0.004 -0.002 0.004
OWNERM 3.706*** 0.758 0.028*** 0.010 0.010 0.009 0.043*** 0.007
RENTER 2.311** 1.015 0.058*** 0.013 0.016 0.012 0.066*** 0.011
TENOTHER -0.327 2.005 0.013 0.023 0.066*** 0.018 0.004 0.019
DWELSSEMI -1.919** 0.759 -0.017* 0.010 -0.018* 0.010 -0.028*** 0.010
DWELSFLAT -2.754*** 0.815 -0.055*** 0.014 -0.042*** 0.014 -0.039*** 0.013
DWELSOTHER 1.299 7.116 -0.036 0.064 -0.020 0.059 -0.030 0.054
REMOTE -4.281 2.947 -0.019 0.035 0.033 0.027 0.051** 0.025
REGIONAL -2.291*** 0.771 0.015* 0.009 0.003 0.008 0.006 0.009
AVSOLAR 1.631*** 0.463 0.009 0.005 0.011** 0.005 -0.002 0.005
AVCDDS -1.676 1.858 -0.006 0.023 -0.023 0.022 -0.003 0.014
AVHDDS 0.411*** 0.142 0.002 0.002 0.004*** 0.001 0.000 0.002

R2 0.280 0.244 0.371 0.143
Obs 9,900 9,898 9,871 9,900

Notes: Variable names and reference categories are as in Table A.1. Regressions also include quarter-by-state controls. The
“weekly expenditures” regression uses OLS. The binary regressions use logit models, with average marginal effects presented.
Standard errors are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues. low-wealth equals one
if household is in the lowest quartile of household net wealth, and zero otherwise. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.4: OLS and logit regressions for impact of solar PV capacity, testing for
non-linearities

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

System size -6.672*** 0.553 -0.037*** 0.007 -0.033*** 0.006 -0.009 0.006
System size
squared

0.621*** 0.105 0.004*** 0.001 0.003*** 0.001 0.001 0.001

AGER 0.142*** 0.025 0.000 0.000 0.001** 0.000 -0.001*** 0.000
FEMALE -0.816* 0.496 0.012* 0.006 0.005 0.006 0.010* 0.006
EMPLOYED 1.436* 0.826 -0.004 0.012 0.004 0.010 0.017* 0.010
UNEMPLOYED 3.555* 1.958 0.011 0.016 0.025* 0.014 0.028** 0.013
PERSONSH 4.428*** 0.520 0.040*** 0.005 0.063*** 0.005 0.012*** 0.004
IHSINCOME 1.375*** 0.413 -0.111*** 0.014 -0.245*** 0.008 -0.011*** 0.002
IHSWEALTH 0.375*** 0.097 0.001 0.001 0.001 0.001 -0.004*** 0.001
COUPLECHILD 1.301 1.274 0.000 0.014 0.002 0.014 0.014 0.012
LONEPARENT -0.567 1.149 0.015 0.013 0.037*** 0.012 0.062*** 0.011
MULTIPLEFAM 0.313 3.488 -0.049 0.034 0.034 0.028 0.011 0.029
LONEPERSON -4.468*** 0.822 -0.005 0.010 -0.058*** 0.009 0.024** 0.010
OTHERFAM -0.983 0.859 -0.027** 0.012 0.008 0.011 0.025** 0.011
OLDER -3.308*** 0.855 -0.008 0.011 -0.015 0.011 -0.076*** 0.012
BORNAUS 2.502*** 0.533 -0.012 0.007 0.004 0.007 0.020*** 0.008
DISABILITY 1.335** 0.545 0.024*** 0.007 0.016*** 0.006 0.050*** 0.006
EDUCHIGH -1.358** 0.566 -0.027*** 0.008 -0.019*** 0.007 -0.053*** 0.007
GOVERNMENT -3.746*** 0.759 0.082*** 0.011 -0.015* 0.009 0.054*** 0.010
NUMBED 4.684*** 0.374 0.026*** 0.004 0.030*** 0.004 -0.006 0.004
OWNERM 3.747*** 0.748 0.029*** 0.010 0.009 0.009 0.093*** 0.011
RENTER 2.197*** 0.782 0.066*** 0.010 0.010 0.009 0.121*** 0.011
TENOTHER -0.216 1.927 0.020 0.022 0.061*** 0.017 0.083*** 0.021
DWELSSEMI -2.080*** 0.769 -0.017* 0.010 -0.018* 0.010 -0.027*** 0.009
DWELSFLAT -2.846*** 0.820 -0.054*** 0.014 -0.042*** 0.014 -0.034*** 0.011
DWELSOTHER 1.108 7.130 -0.037 0.065 -0.021 0.059 -0.020 0.052
REMOTE -4.075 2.958 -0.019 0.036 0.034 0.027 0.039** 0.020
REGIONAL -2.388*** 0.766 0.014 0.009 0.002 0.008 0.007 0.008
AVSOLAR 1.608*** 0.463 0.009 0.005 0.011** 0.005 -0.003 0.004
AVCDDS -1.644 1.862 -0.006 0.023 -0.023 0.022 -0.022 0.024
AVHDDS 0.395*** 0.143 0.002 0.002 0.004*** 0.001 0.000 0.002

R2 0.284 0.246 0.372 0.207
Obs 9,900 9,900 9,870 9,900

Notes: Variable names and reference categories are as in Table A.1. Regressions also include quarter-by-state controls. The
“weekly expenditures” regression uses OLS. The binary regressions use logit models, with average marginal effects presented.
Standard errors are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues. *** p < 0.01, ** p <
0.05, * p < 0.1.
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Table C.5: Instrumental variable results for impact of estimated solar PV output

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

System size -0.771*** 0.261 -0.006* 0.003 -0.005* 0.003 -0.008*** 0.003
AGER 0.132*** 0.025 -0.001*** 0.000 -0.001 0.000 -0.001*** 0.000
FEMALE -0.826* 0.507 0.014** 0.007 0.008 0.007 0.010 0.006
EMPLOYED 1.395* 0.838 -0.037*** 0.012 -0.035*** 0.012 -0.020** 0.010
UNEMPLOYED 3.542* 1.988 0.064** 0.032 0.147*** 0.032 0.071** 0.031
PERSONSH 4.431*** 0.519 0.054*** 0.006 0.073*** 0.007 0.022*** 0.006
IHSINCOME 1.378*** 0.415 -0.101*** 0.008 -0.146*** 0.011 -0.011*** 0.004
IHSWEALTH 0.370*** 0.101 0.003* 0.002 0.003* 0.001 -0.007*** 0.002
COUPLECHILD 1.080 1.287 -0.047*** 0.014 -0.064*** 0.014 -0.016 0.015
LONEPARENT -0.797 1.158 0.028 0.018 0.048*** 0.018 0.124*** 0.019
MULTIPLEFAM -0.099 3.500 -0.100*** 0.036 -0.054 0.042 -0.032 0.034
LONEPERSON -4.134*** 0.865 0.007 0.011 -0.012 0.011 0.016 0.010
OTHERFAM -0.972 0.869 -0.045*** 0.010 -0.038*** 0.010 0.001 0.011
OLDER -3.436*** 0.868 -0.035*** 0.012 -0.047*** 0.011 -0.065*** 0.010
BORNAUS 2.367*** 0.539 -0.013* 0.008 -0.005 0.008 0.023*** 0.006
DISABILITY 1.441*** 0.551 0.023*** 0.007 0.014** 0.007 0.054*** 0.007
EDUCHIGH -1.251** 0.578 -0.016** 0.007 -0.018** 0.007 -0.048*** 0.006
GOVERNMENT -3.867*** 0.773 0.097*** 0.011 0.025** 0.011 0.044*** 0.009
NUMBED 4.471*** 0.410 0.028*** 0.005 0.029*** 0.005 0.002 0.004
OWNERM 3.722*** 0.762 0.026*** 0.009 -0.008 0.009 0.046*** 0.007
RENTER 2.232** 0.899 0.067*** 0.012 -0.005 0.011 0.084*** 0.011
TENOTHER 0.290 2.025 0.013 0.022 0.078*** 0.026 0.017 0.020
DWELSSEMI -1.528** 0.780 -0.019* 0.011 -0.018* 0.010 -0.034*** 0.010
DWELSFLAT -3.156*** 0.825 -0.047*** 0.012 -0.020* 0.011 -0.044*** 0.013
DWELSOTHER 1.360 7.244 -0.013 0.057 -0.012 0.046 -0.012 0.055
REMOTE 0.296 2.761 -0.008 0.024 0.055** 0.027 0.023 0.025
REGIONAL -1.883*** 0.667 0.003 0.008 0.002 0.008 0.010 0.008
AVSOLAR 0.273 0.228 0.003 0.003 0.001 0.003 0.003 0.003
AVCDDS 4.056*** 1.221 0.010 0.013 0.022* 0.012 -0.045*** 0.012
AVHDDS 0.949*** 0.077 0.006*** 0.001 0.007*** 0.001 0.001 0.001

First-stage 0.736*** 0.055 0.736*** 0.055 0.736*** 0.055 0.736*** 0.055
coeff.
Effective
F-statistic

181.529 181.529 181.529 181.529

Minimum
eigenvalue
statistic

322.982 322.982 322.982 322.982

Stock & Yogo
critical value

16.38 16.38 16.38 16.38

Obs 9,874 9,874 9,874 9,874

Notes: Variable names and reference categories are as in Table A.1. Regressions also include quarter-by-state controls.
Instrument is average solar PV capacity of similar households. 2SLS is used. Robust standard errors are in brackets. The
effective F-statistic is from the Montiel Olea and Pflueger test of weak instruments. The Stock and Yogo critical values are
for 2SLS size of nominal 5 percent Wald tests at the 10 percent threshold level. Minimum eigenvalue statistics and Stock
and Yogo critical values are from regressions without robust standard errors. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Appendix D

Table D.1: OLS and logit regressions for impact of solar PV capacity, by home-ownership

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

Panel A: Homeowners
System size (kW) -3.770*** -0.012*** -0.015*** -0.002

(0.241) (0.003) (0.003) (0.002)
R2 0.284 0.275 0.376 0.145
Obs 6,740 6,732 6,719 6,649

Panel B: Renters
System size (kW) -2.286** -0.034* -0.013 0.012

(1.003) (0.018) (0.013) (0.011)
R2 0.290 0.232 0.382 0.155
Obs 2,940 2,894 2,915 2,940

Notes: Regressions control for all covariates in section 4.3. The “weekly expenditures” regression uses
OLS. The binary regressions use logit models, with average marginal effects presented. Standard errors
are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.2: OLS and logit regressions for impact of solar PV capacity, NSW ACT, and NT
excluded

Weekly energy Low Income Ten-Percent Unable to pay
expenditures High Costs -Rule bills on time

($) (binary) (binary) (binary)

System size (kW) -3.746*** -0.018*** -0.020*** -0.004
(0.251) (0.004) (0.004) (0.003)

R2 0.280 0.254 0.355 0.204
Obs 7,068 7,060 7,051 7,068

Notes: Regressions control for all covariates in section 4.3. The “weekly expenditures” regression uses
OLS. The binary regressions use logit models, with average marginal effects presented. Standard errors
are in brackets. Robust standard errors for the OLS model; Delta-method standard errors for the logit
models. Pseudo R2 for logit models. Some observations are omitted due to multicollinearity issues. ***
p < 0.01, ** p < 0.05, * p < 0.1.

Table D.3: OLS and logit regressions for alternative objective energy poverty indicators

LIHC, alt poverty line Five Percent Rule Fifteen Percent Rule
(binary) (binary) (binary)

System size (kW) -0.011*** -0.049*** -0.006***
(0.003) (0.004) (0.002)

Pseudo R2 0.264 0.304 0.442
Obs 9,900 9,872 9,873

Notes: Regressions control for all covariates in section 4.3. The regressions use logit models, with average
marginal effects presented. Delta-method standard errors are in brackets. Some observations are omitted
due to multicollinearity issues. *** p < 0.01, ** p < 0.05, * p < 0.1.
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