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1 Introduction

Risk aversion is central to the theory of individual decision-making under

uncertainty underpinning models of inter-temporal consumption and saving

behaviour, portfolio choice and labour supply to name a few. Risk aversion

has also been identified as an important empirical factor in a broad range of

economic and social choices.1 The household’s degree of risk aversion is also

a crucial input in large-scale macroeconomic models, where it plays a large

part in determining the economy’s steady state and the dynamic response

of households to changes in interest rates, taxes, and other aspects of the

economic environment.2

While a range of international studies, mostly from the U.S., have estimated

the key parameter which determines risk aversion, there is no evidence, to

our knowledge, for Australia. As it seems plausible that Australian house-

holds might differ substantially from their U.S. counterparts in their attitude

towards risk and therefore their inter-temporal consumption and portfolio

choices, it is important to estimate this parameter for Australia. This will

be particularly useful for researchers who build large-scale models of the

Australian economy. This is our main contribution in this paper.

We provide Euler equation-based estimates of the risk aversion parameter

(γ) from the constant relative risk aversion (CRRA) utility function for

Australia using longitudinal consumption data from the Household Income
1While too numerous to list here, an interesting example is an individual’s occupational

choice, where more risk averse individuals have been found to choose careers in occupations
that involve lower earnings risk (Bonin et al., 2007).

2The related concept of ‘prudence’ is also an important factor in decision-making under
uncertainty. See Kimball (1990) on this point.
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and Labour Dynamics in Australia (HILDA) survey and data on aggregate

interest rates. These are the first Euler equation estimates using micro data

in Australia as far as we are aware.

To preview the results, our preferred non-linear specifications that allow for

the well-known and substantial problem of measurement error suggest γ is

in the range of 1.2 to 1.4. This implies a relatively modest degree of risk

aversion for the mean household, similar to the 1.5 found in Alan et al.

(2009), a recent comparable US study.

The CRRA utility function and our estimation approach embed the assump-

tion that relative risk aversion is constant with respect to a household’s level

of wealth. Previous Australian studies have found mixed evidence regard-

ing this assumption. We also test this assumption and we are unable to

reject the assumption of constant relative risk aversion. We also attempt to

explain the variety of findings from previous Australian studies.

In the next section, we provide some background about the research agenda

around estimating risk aversion. Section 3 describes the data we use while

section 4 details our tests of the assumption that relative risk aversion is con-

stant in wealth. Having established some empirical support for the CRRA

assumption, section 5 presents our γ (and other parameter) estimates from

various Euler equation models derived from the CRRA assumption. Sec-

tion 6 provides some conclusions and areas where further research would be

useful in the Australian context.
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2 Background

Given the fundamental interest around risk aversion and its important in

economic modeling, an extensive body of empirical research attempts to

quantify the degree of risk aversion among households. Although there are a

number of possible ways to proceed,3 this paper follows the ‘Euler equation’

approach pioneered in Hall (1978). In basic terms, this approach exploits

the relationship between consumption and interest rates derived from the

household’s inter-temporal optimisation problem to uncover the risk aversion

parameter in the household’s underlying utility function.

To operationalise the Euler equation approach, a particular form of pref-

erences must be assumed, and we opt for the constant relative risk aver-

sion (CRRA) utility function U(C) = C
1−γ

1−γ , where C is consumption

and γ is the coefficient of relative risk aversion. A particular advantage of

CRRA preferences is that they imply an empirically tractable Euler equa-

tion, namely:

Et

[(
Ct+1
Ct

)−γ

(1 + rt+1)β
]

= 1 (1)

where rt is the return on a generic asset at time t, β is the household’s

discount factor and the expectation operator Et indicates that the house-

hold’s consumption decision takes place in an environment where the value

of future variables (such as earnings) is uncertain.
3A more structural approach would be to estimate the degree of risk aversion via simu-

lated method of moments, as done in Gourinchas and Parker (2002). Alternatively, stock
returns can be used to infer the degree risk aversion, which is the approach underlying the
‘equity premium puzzle’ literature (see Kocherlakota (1996) for example). A completely
different approach to estimating individual risk aversion is employed in experimental stud-
ies such as Levy (1994).
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CRRA preferences have a number of other desirable properties, which have

made them a popular specification in models of inter-temporal consump-

tion decisions under uncertainty. This includes the convenient feature that

the standard (Arrow-Pratt) measure of relative risk aversion is constant in

wealth and given directly by γ,4 while the elasticity of inter-temporal sub-

stitution (EIS) is also constant and equal to 1/γ.5 CRRA preferences also

have a number of economically appealing aspects, including the presence of

‘prudence’, which gives rise to a precautionary (or ‘buffer stock’) savings

motive when households face future income uncertainty.6

The Euler equation approach that we use was initially discredited in the

early 2000s in the United States literature because it generally failed to

deliver consistent and reliable estimates of γ and β despite the large number

of studies (Carroll, 2001a). This disappointing performance was attributed

to a number of factors including measurement error in consumption data

and difficulty in finding suitable instruments for the endogenous variables,

especially in the case of the log-linearised Euler equation as explained below.

More recently, lengthening panel datasets, improved availability of consump-
4For a generic utility function U(C), the Arrow-Pratt measure of relative risk aversion

is given by -CU ′′(C)/U ′(C). For other preference specifications, the degree of relative risk
aversion and the elasticity of inter-temporal substitution (EIS) are not simple mappings
from preference parameters, and instead depend on the current values of consumption (or
wealth).

5This simple inverse relationship for CRRA preferences is what allows the Euler equa-
tion to identify the agent’s degree of risk aversion. However, there are more general forms
of preferences in which risk aversion and the EIS are governed by separate parameters.
Encouragingly, the one study to test this inverse relationship empirically found in favour
of it (Yagihashi and Du, 2015).

6For CRRA preferences, relative prudence is equal to γ+1. In general, a utility func-
tion exhibits prudence when its third derivative with respect to consumption is positive
(Kimball, 1990).



6

tion data, and analytical refinements have allowed estimation of γ and β,

using the Euler equation aproach, in a more precise way. For example,

Alan et al. (2009) derive a GMM panel estimator that explicitly allows for

measurement error in consumption data, while Alan et al. (2018) show that

synthetic panel data based on repeated cross-sections can overcome the en-

dogeneity problems given a long enough time dimension.7

Following these recent refinements in the international literature, we provide

Euler equation-based estimates of γ for Australia using data from the House-

hold Income and Labour Dynamics in Australia (HILDA) survey. Based

upon empirical research and simulation studies from other countries, the

HILDA data is only now becoming long enough to support this kind of

analysis, with around 14 years considered to be the minimum required panel

length (Alan et al., 2009).

While CRRA preferences are a convenient assumption, they impose a re-

striction on the relationship between risk aversion and wealth, namely that

relative risk aversion is constant with respect to a household’s level of wealth.

In fact, the empirical support for this form of preferences is not overwhelm-

ing, in part because there are relatively few studies that have formally tested

the CRRA assumption.8 Therefore, we undertake an initial test of whether

the CRRA assumption is in fact a good one for Australian households, using

an approach based on a household’s share of risky assets, similar to that in
7Both studies use evidence from Monte Carlo simulations to demonstrate the reliabil-

ity of their proposed estimators using plausible data generating processes and based on
realistic features of the data with regards to panel length and the extent of measurement
error in consumption.

8Some examples include Ogaki and Zhang (2001); Chiappori and Paiella (2011); Tsigos
and Daly (2016); Conlin et al. (2016).
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Chiappori and Paiella (2011) and Tsigos and Daly (2016) (the latter being a

recent Australian study). Once we account for endogeneity in risk aversion

and wealth as well as measurement error – which we show is crucial in such

regressions – we cannot reject the CRRA assumption.9 While constant for

a particular household over time, our analysis reveals considerable variation

in relative risk aversion between households with a median γ of 1.8.10 As a

cross-check, we find that the distribution of this ‘objective’ measure of risk

aversion is significantly correlated with the two subjective measures of risk

aversion contained in the HILDA survey.

We next turn to a detailed description of our data and sample selection.

3 Data

The HILDA survey began in 2001 and provides annual data on a broad

range of economic and social topics. The samples used in all components of

our analysis comprise household heads of working age. A head is defined as

the oldest male member of a household, or the oldest female in households

without a male adult.

Our definition of household head is not important for the results presented

below. We identify a ‘household head’ so that we can follow individuals
9In Appendix C, we show that failing to take account of measurement error in wealth

in a regression of risky asset share on wealth can result in a negative estimated coefficient
on wealth even when the true coefficient is known to be zero.

10While the median value of 1.8 is somewhat above our Euler equation estimates, we
note below estimates of γ using risky asset shares are very sensitive to the definition of
risky asset (see Appendix B) and assumptions about the market portfolio. For this reason,
we consider the point estimates from our Euler equation analysis to be a better indicator
of γ for the ‘average’ or ‘typical’ household.
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over time using the xwaveid variable in HILDA. The analysis is based upon

household-level data so choice of head is rather arbitrary. In our Euler

equation estimates below we only use couples that stay together so choosing

the female as the head of household does not alter the results. We have

verified this using alternative definitions of household head and the results

presented below are unchanged.

We use the sum of expenditure on groceries and meals out as a proxy for

household consumption. Unlike other components of household expenditure,

information on these components has been collected in almost all years of

the survey.11 Just as importantly, the data quality of these items is probably

higher than other components of expenditure in the HILDA survey (Wilkins

and Sun, 2010), although they still contain significant measurement error as

we quantify in Appendix D. These nominal series are deflated using State-

specific consumer price indices for food.

Because of differing data requirements, the samples used in our risky asset

share and Euler equation estimates differ in a number of key respects, as we

now describe.12

Risky asset share regressions

The risky asset share regressions rely on HILDA’s wealth module which is

included in only four survey years: 2002, 2006, 2010 and 2014. The sample is

based on an unbalanced panel of these four years consisting of all responding
11The expenditure information is taken from the household questionnaire for the years

2001, and 2003 to 2005, and from the self completion questionnaire for subsequent years.
12Further details are provided in Appendix A.
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household heads between ages 23 and 59 inclusive.

In the base model, risky assets are defined narrowly as equities, to allow

comparability with the two exiting Australian studies, although we consider

broader definitions of risky assets in extended models. The regressions only

include households with positive risky assets (however defined), and those

with information on household size and age of household head. The mean

value of the risky asset share is 17 per cent based on the narrow defini-

tion of risky assets. The instrumental variable (IV) regressions also require

non-missing data on the instruments, that is, household disposable income

and household consumption (which we again proxy using expenditure on

groceries and meals out).

Consumption Euler equations

Again, our Euler equation analysis uses grocery and meals out expenditure

as a proxy for overall household consumption, an approach also adopted in

most overseas studies.13 The panel encompasses the period 2001 to 2016 in-

clusive, except for 2002 where information on expenditure was not collected

in HILDA.

Our sample selection choices closely follow Alan et al. (2009) to aide com-

parability with that study. We restrict the sample to households consisting

of couples who were in a stable relationship over the period in which they

feature in the survey. Also, because the Euler equation only holds for an in-
13This includes the recent US study by Alan et al. (2009). The use of food (and meals

out) expenditure as a proxy for consumption in most US studies is because food was
the only component of household expenditure covered in the US Panel Survey of Income
Dynamics (PSID) from the survey’s inception in 1968 until 1999.
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terior solution, we exclude households who are liquidity constrained, which

we define as having zero financial assets in any of the years they feature in

the panel. The latter restriction removes only 36 observations. The real in-

terest rate series is calculated as the annual-average nominal 3-month bank

accepted bill rate less inflation expectations pertaining to that period.14

4 Testing the CRRA assumption using share of

risky assets

This section reviews the empirical support for CRRA preferences before we

proceed to our Euler equation-based estimates. We closely follow Chiappori

and Paiella (2011), a recent study that analysed whether relative risk aver-

sion is constant using Italian panel data on risky asset shares. By solving

a 2-period optimisation problem of a risk-averse investor, they show that

the share of wealth invested in risky assets is proportional to investor h’s

relative risk aversion, γh:

αh = 1
γh

E[rm − rf ]
σ2

m

(2)

where αh is the risky asset share, rm is the return on the risky asset, rf is

the risk free rate and σ2
m is the variance of the return on the risky asset.

However, they also formally demonstrate that cross-sectional wealth data

alone is insufficient to test whether relative risk aversion is constant. This
14We experiment with two different measures of inflation expectations: the Reserve

Bank of Australia’s survey of market economists and the inflation rate implied by inflation-
indexed bond prices. The key results are not greatly affected by this choice.
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is because the distribution of risky asset share in the population depends

on the joint distribution of wealth and risk aversion, not just the form of

preferences (Chiappori and Paiella, 2011). For example, if risk aversion is

heterogeneous across the population, it is reasonable to expect that less risk

averse people will earn, on average, higher returns and accumulate greater

wealth over time. This would lead to a negative correlation between relative

risk aversion (measured by risky asset share) and wealth cross-sectionally,

even when the underlying preferences were CRRA. Chiappori and Paiella

show that panel data can overcome this problem, by allowing one to test

whether relative risk aversion varies with wealth for a particular household.

In Australia, Tsigos and Daly (2016) test the relative risk aversion assump-

tion using HILDA wealth data. Using a different measure of relative risk

aversion (based on observed portfolio weights for each household), Tsigos and

Daly find a negative correlation between risk aversion and wealth. However,

they find no relationship between relative risk aversion and wealth when

they instead use risky asset share as their measure of risk as in Chiappori

and Paiella (2011). In contrast, Cardak and Wilkins (2009) find a small

positive relationship between risky asset share and wealth. Their study

was also based on the HILDA survey, but they only had access to a single

cross-section of wealth data (for 2002) that was available at the time.

Given the mixed findings in Australia, we re-test the question of whether

relative risk aversion varies with wealth. Compared to the previous Aus-

tralian studies by Cardak and Wilkins and Tsigos and Daly, we benefit from

an additional 3 waves and 1 wave of data respectively. In particular, this
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allows us to use the panel dimension of the HILDA survey, which was un-

available to Cardak and Wilkins. We follow the measure of risk aversion

used in Chiappori and Paiella and Cardak and Wilkins based on risky asset

shares.

The basic equation that we estimate is:

log(αh
t ) = β0 + β1 log(W h

t ) + β2Xh
t + uh + νh

t (3)

where αh
t is the share of risky assets for household h at time t, W h

t is total

financial wealth, uh is a fixed effect and νh
t is random error term. To control

for the likely endogeneity between risky asset share and wealth, we also

estimate the equation in first differences (FD) which eliminates the possible

bias from uh:

∆ log(αh
t ) = β0 + β1∆ log(W h

t ) + β2∆Xh
t + ∆νh

t (4)

As pointed out in Chiappori and Paiella, measurement error in the wealth

data can also result in biased estimates of the risk aversion-wealth relation-

ship if not adequately dealt with. This is because total financial wealth is the

denominator of the dependent variable and therefore appears on both sides

of equation 4. We show in Appendix C that for a mean risky asset share

of less than 50 per cent, standard multiplicative measurement error in the

wealth data will result in moderate to severe downward bias in estimates

of β1 given plausible values for the variance of the measurement error.15

15In Appendix C, we assume that 20 per cent of the variance in observed wealth is
measurement error. While there is very little evidence on the extent of measurement error
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To address the problem of measurement error, we instrument wealth with

disposable household income and food consumption in the levels equation.

Similarly, we use growth in disposable income and growth in consumption

as instruments for wealth in the first difference equation. Our final speci-

fication also includes year dummies (to control for macroeconomic effects)

and controls for household composition and age.

4.1 Results

As suspected, the estimated relationship between risky asset share and

wealth is sensitive both to whether we use instrumental variables to adjust

for the impact of measurement error and whether the model is estimated

in levels or first differences (Table 1). The basic OLS regression in levels

(column 1) shows a strong and highly significant negative relationship (-

0.13) between risky asset share and wealth. However, once we adjust for the

impact of measurement error by instrumenting for wealth, the coefficient on

wealth falls in magnitude and becomes insignificant (column 2). As we ar-

gued above, there are good reasons to think that measurement error would

contribute to a negative cross-sectional relationship even when none truly

exists when the mean risky asset share is less than 50 per cent.16

in wealth survey data, studies that have examined measurement error in food consump-
tion suggest that this assumption is conservative (see for example Ahmed et al. (2006);
Brzozowski et al. (2017)). Further, the bias caused by measurement error is likely to
be exacerbated in the first difference regression, because the process of differencing data
magnifies the noise-to-signal ratio.

16The mean share of risky assets in the data is well below 50 per cent unless superannu-
ation is included. Including superannuation as a risky asset results in a mean risky asset
share of 73 per cent. If the model in column 1 is re-estimated using this broader measure
of risky assets, the estimated coefficient becomes close to zero, which is what we would
expect based on our simulation graph in Appendix C.
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Column 3 re-estimates the basic model in first differences. The coefficient

on wealth is again negative, but is very imprecisely estimated and not sig-

nificantly different from zero at standard confidence levels.

Columns 4 and 5 experiment with expanded definitions of risky assets. Col-

umn 4 adds cash investments (bonds and the like) and trusts to the measure

of risky assets, while the regression in column 5 additionally includes busi-

ness equity and superannuation. In the latter regression, the denominator is

also adjusted to include business equity and superannuation. The coefficient

on wealth remains insignificant, although it continues to be negative.

Given the difference between the OLS and IV estimates, we explore whether

the results are robust to alternative instruments for wealth. One obvious

alternative instrument for change in wealth is the cumulative difference be-

tween disposable income and consumption in the intervening periods be-

tween observations on wealth. In other words, this utilises income and con-

sumption data in years that did not contain a wealth module in HILDA.

For example, for 2006 we subtract cumulative food consumption from cu-

mulative disposable income for each household over the period 2002 to 2006,

which yields a ‘flow’ measure of change in wealth. When we use this variable

as the instrument in models 3 to 5, the key results are unaffected.

We also conduct a weak instruments test, and find that our chosen in-

struments are well correlated with financial wealth and change in financial

wealth.17 A test of over-identifying restrictions fails to reject the null hy-
17The correlation between financial assets and income is 0.44 in levels and 0.18 in growth

terms, while the correaltion between wealth and consumption is 0.26 in levels and 0.08 in
growth terms.
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Table 1: Risky asset share regressions

(1) (2) (3) (4) (5) (6)
OLS Level IV Level OLS FD IV FD IV FD IV FD

Risky assets: numerator E E E/FA E E+C+T E+C+T+BE+S
denominator: FA FA FA FA FA FA+BE+S
Total Financial Assets* -0.128 -0.047 -0.313 -0.173 -0.226 -0.033

(0.0122) (0.0452) (0.0191) (0.139) (0.1355) (0.0222)
Year dummies
2006 -0.056 -0.08

(0.0405) (0.042)
2010 -0.229 -0.248 -0.157 -0.136 -0.099 -0.012

(0.0437) (0.0451) (0.0642) (0.0664) (0.0658) (0.0138)
2014 -0.363 -0.391 -0.168 -0.161 -0.166 -0.024

(0.0463) (0.0481) (0.0677) (0.069) (0.0684) (0.0135)
HH size -0.205 -0.218 -0.258 -0.342 -0.211 0.035

(0.0409) (0.0418) (0.0759) (0.1018) (0.0965) (0.0195)
Age 0.076 0.077 0.015 0.012 0.008 0.007

(0.0186) (0.0189) (0.0303) (0.0319) (0.0312) (0.0056)
Age squared -0.081 -0.085 -0.025 -0.022 -0.018 -0.01

(0.0215) (0.0219) (0.0371) (0.0388) (0.0381) (0.0071)
Constant -1.415 -2.199 -0.16 -0.127 0.029 -0.055

(0.3946) (0.5738) (0.6024) (0.6331) (0.6161) (0.1064)
N 6952 6849 3111 3070 3245 10408

Standard errors in parentheses.
E=Equities; C= Cash investments; T=Trusts; BE=Business equity; S=Superannuation;
FA=Financial assets = E+C+T+ Bank accounts.
∗ Equal to denominator used to calculate risky asset share.
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pothesis that the chosen instruments are exogenous for models 3 to 5, but

does reject the null for model 2. We also try including labour force partici-

pation as a component of Zt, and use its lag as an instrument. This addition

does not affect the main results in Table 1.

Comparison with Tsigos and Daly’s results

In finding no significant relationship between risky asset share and wealth,

our results confirm the results from Tsigos and Daly’s sensitivity analysis

but contradict their main result. However, their main result – that relative

risk aversion falls with wealth – is based on a different measure of risk that

uses portfolio weights calculated using external information on asset returns.

Tsigos and Daly do not attempt to explain why the two approaches yield

different results in their paper. It is also worth noting that, compared with

Tsigos and Daly, our test of the risk aversion-wealth relationship benefits

from an extra year of wealth data, giving our test additional power.

While we are unable to reject the CRRA assumption, the estimated coef-

ficient on wealth is negative in all five specifications albeit insignificant in

four cases. We therefore view our results as providing tentative support for

the CRRA, particularly given that the insignificant estimates only arise in

the instrumental variable regressions. Additional years of HILDA data go-

ing forward will help us to work out whether risk aversion really is constant

with respect to wealth or not.
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Distribution of implied relative risk aversion parameter

Equation 2 can be used to calculate the distribution of γh across the popu-

lation. However, as Chiappori and Paiella (2011) note, this distribution is

only identified up to a scale factor, given by the ratio of the excess return to

the variance of the risky portfolio rm−rf

σ2
m

. Taking the plausible (and simple)

case where this ratio is equal to one, the value of γh is just the inverse of

the risky asset ratio for investor h. Clearly, the derived value of γh will de-

pend inversely on the definition of ‘risky asset’, and will be higher or lower

for narrower and broader definitions respectively. Additionally, very small

values of αh will result in very large values of γh. Following Chiappori and

Paiella we therefore truncate the distribution of risky asset shares to exclude

values less than 6 per cent and compute the median rather than mean value.

The median estimates of γh are 1.1, 2.2 and 2.4 across the three definitions

of risky assets used in our regressions. We also find little evidence that γh

varies by wealth. Table B.1 in Appendix B contains further details.

Correlation with subjective data on risk aversion

An interesting question is whether the risk aversion measure derived from

risky asset shares correlates with subjective measures of risk aversion con-

tained in the HILDA survey. In particular, the two seperate survey questions

ask respondents to indicate the degree of financial risk they are prepared to

take.18 The risky asset share is significantly correlated with both subjective
18The HILDA codes are _firisk and _pntrisk respectively. For the former variable

higher values indicate higher risk aversion, while for the latter, higher values imply lower
risk aversion.
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measures, with a correlation coefficient of -0.25 for one subjective measure

(which measures risk aversion) and 0.05 for the second measure (which mea-

sures risk appetite).

5 Estimates of risk aversion using a consumption

Euler equation

Based upon our tentative conclusion that relative risk aversion is constant

with respect to wealth, we now explore Euler equation estimation based on

CRRA preferences. The Euler equation approach of recovering preference

parameters began with Hall (1978), and we follow the essence of this ap-

proach. In particular, with CRRA preferences, a time discount factor β and

an interest rate r, the Euler equation linking consumption in period t to

consumption in period t+1 for household h is:

(
Ch

t+1
Ch

t

)−γ

(1 + rt+1)β exp (θ∆Zh
t+1 + ∆vh

t+1) − 1 = ϵt+1 (5)

Et [ϵt+1] = 0 (6)

Where the expectation operator relates to the time dimension, implying that

the mean of the expectational error, ϵt+1 is equal to 0 for a given household

over time rather than for the cross section.

Two other points about Equation 5 are worth making. First, this condi-

tion holds only for an interior solution for consumption, and will generally

not hold for households subject to binding borrowing constraints. Second,

Equation (5) is derived on the assumption that consumption and leisure are
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additively separable in the household’s utility function. As a sensitivity test

of our main results, we also consider the case where consumption and leisure

are non-separable.

Exact non-linear equation versus the linearised version

Previous studies have typically proceeded in one of two ways: estimating

the exact, non-linear Euler equation as it appears in 5 using generalized

method of moments (GMM); or taking a first- or higher-order linear ap-

proximation of the Euler equation and using OLS or linear IV estimation.

Both approaches have drawbacks.

To begin with, both approaches require instruments for the model’s endoge-

nous variables – consumption growth and the interest rate. In the non-linear

case, economic theory implies that any variables in the consumer’s informa-

tion set at time t are valid instruments, including lags of consumption growth

and the interest rate. However, Carroll (2001a) and Alan et al. (2009)) show

that estimates based on the exact non-linear equation are biased when the

consumption data contains measurement error, which is almost certainly the

case in practice. These studies suggest that estimates of β will be partic-

ularly biased in the presence of measurement error, and this bias does not

improve with a longer panel length (Alan et al., 2009).

The linearised approach overcomes the problem with measurement error19,

but creates its own problems. To see this, first note that the first-order
19With multiplicative measurement error, log-linearising renders the measurement er-

ror additive meaning that measurement error would no longer affect the consistency of
parameter estimates.
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approximation is given by:

∆ log(Ct+1) = 1
γ

[log(β) + log(1 + rt+1)θ∆Zt+1 (7)

+∆vt+1 + log(1 + ϵt+1) + kt]

where kt includes higher order terms remaining from the approximation

process.

The problem is that the composite error term is now likely to be correlated

with consumption growth and interest rates via the higher-order terms in

kt. Carroll (2001a) shows that these high-order terms are inherently endoge-

nous in a standard model of life-cycle consumption behaviour with wage

uncertainty, and that estimates of γ will be severely biased. A further dis-

advantage of using equation 7 is that β can no longer be recovered as it is

subsumed into the constant along with the mean values of the measurement

error and approximation errors.

Various solutions have been proposed to overcome the difficulties with each

of these approaches. In the non-linear case, Ventura (1994), Chioda (2004)

and Alan et al. (2009) show that explicitly taking account of measurement

error in consumption can yield relatively accurate estimates of the preference

parameters γ and β even in panels of only moderate length (that is, around

15 years of data). Each of these studies essentially proceeds by assuming

that true consumption (C⋆
t ) is subject to log-normal iid measurement error

ηt with equal variance σ2
η across households, such that Ct = C⋆

t ηt. The
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modified Euler equation is:

Et

[(
Ct+1
Ct

)−γ

(1 + rt+1)β exp (θ∆Zt+1) − exp(γ2σ2
η)
]

= 0 (8)

While this single moment equation does not allow β and σ2
η to be separately

identified, Alan et al. (2009) show that an analogous moment condition for

two-period apart consumption (Ct+2/Ct) can be used to identify σ2
η (and

therefore β).

Alternatively, Alan et al. (2018) show that relatively precise estimates of γ

can be obtained using the linearised model if a long enough time series on

consumption is available. However, their paper suggests that ‘long enough’

equates to perhaps 40 years of data, a requirement that few if any panel

surveys satisfy. As a practical alternative, they show that a synthetic panel

formed from repeated cross-sectional surveys over a long enough period can

deliver reliable estimates of γ using the linearised Euler equation.

Our approach

With (at most) 15 years of available consumption data in the HILDA sur-

vey, we opt for GMM on the exact non-linear Euler equation, allowing for

measurement error in our preferred specifications. For reference, we also

obtain an estimate of γ from a linearised version of the model, noting the

caveats above in relation to biased estimates in small panels such as ours.

In dealing with measurement error, we consider two approaches. As we

use a single moment equation, neither approach allows us to separately

identify the discount rate β and the variance of the measurement error σ2
η
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without further moment conditions or an ‘external’ estimate of σ2
η.20 In

the first approach, we estimate a single parameter, which is some unknown

combination of β and σ2
η. In the second approach, we use separate estimates

of the variance of the measurement error σ2
η, which enables us to recover an

estimate of β. This analysis is reported in Appendix D.

The vector ∆Zt can in principal consists of any variables that may affect

the marginal utility of consumption, including endogenous variables such

as labour supply choices (Attanasio and Low, 2004). While we experiment

with other variables, our final specification for ∆Zt only includes change in

household size as in Alan et al. (2009). Changes in household size should

have a large and direct effect on marginal utility, and this has been confirmed

empirically (Attanasio and Low, 2004). We also include a 2008 year dummy

in some specifications. This dummy would capture a possible structural

break in the relationship between consumption growth and interest rates

that may have occurred with the onset of the global financial crisis.

Empirical model

Taking all of the above gives the following moment conditions for each pe-

riod t (where the household superscript has been suppressed) whose sample

counterparts are used in GMM estimation:
20We also consider adding a second two-period apart moment condition, which would

allow β and σ2
η to be disentangled (Alan et al., 2009). However, we found that the

addition of two-period apart moments greatly reduced the precision of the parameter
estimates, resulted in implausible values for γ and often led to non-convergence in our
GMM estimation routine.



23

Et

{[(
Ct+1
Ct

)−γ

(1 + rt+1)β exp (θ∆Zt+1) − exp(γ2σ2
η)
]

Xt

}
= 0 (9)

where Xt is the set of instruments at time t, as described in the next section.

As noted above, we also estimate a standard linearised Euler equation:

∆ log(Ct+1) = α + 1
γ

log(1 + rt+1) + θ

γ
∆Zt+1 + et+1 (10)

where α now includes log β as well as the means of the higher-order approx-

imation errors, and et now includes the household’s expectational error, the

measurement error and the time-varying components of the approximation

error.

Choice of instruments

We follow many previous studies in using lags of the interest rate (in addi-

tion to a constant) and consumption growth as instruments in our non-linear

GMM estimation. There are a number of reasons why these are likely to

be good instruments. First, rational expectations suggests that lagged vari-

ables, which are known to the household at time t, will be uncorrelated with

their forecast error the following period. Second, consumption and inter-

est rates tend to be adequately correlated with lags of themselves, avoiding

the problem of ‘weak instruments’. Lastly, simulation exercises have shown

that they are valid in a standard life-cycle model environment (Alan et al.,

2009). We also use change in household size as an instrument for itself, and
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do likewise with the 2008 year dummy where present. We also experiment

with dropping lagged consumption growth from our instrument list (see col-

umn 4 in Table D.1). This leaves the lagged interest rate and a constant

to identify the two parameters of interest γ and β, which is essentially the

just-identified model applied in Alan et al. (2009). Because the linearised

model is a log transformation of the true model, we substitute log versions

of the instruments used in the non-linear equation.21

All estimates of the non-linear model are based on a standard two-step

GMM with robust weight matrix. Estimation based on an alternative weight

matrix, such as iterative GMM, had very little impact on the results. The

linearised model is also estimated using (linear) GMM.

Allowing for non-separable consumption and leisure

The Euler equations (5) and (10) were derived on the assumption of sepa-

rability between consumption and leisure. However, the few international

studies that have formally tested separability have generally found against

this assumption.22 As a sensitivity test, we estimate a modified Euler equa-

tion derived from non-separable Cobb-Douglass preferences U = 1
ρ1ρ2

(Cρ1L1−ρ1)ρ2 ,

where L is leisure. Here, the coefficient of relative risk aversion is a combi-

nation of both utility parameters and is given by 1 − ρ1ρ2. The resulting

Euler equation is:
21In fact, by subsuming the measurement error into the error term, the error term

becomes an MA(1) process. While this means that the first lag of the interest rate is no
longer a valid instrument, we find that using the second lag of the interest rate results in
implausible (negative) estimates of γ.

22We are not aware of any Australian studies that have examined this question.
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Et

(Ch
t+1

Ch
t

)ρ1ρ2−1(
Lh

t+1
Lh

t

)ρ2−ρ1ρ2

(1 + rt+1)β exp (θ∆Zh
t+1 + ∆vh

t+1)

 = 1

(11)

Results

The GMM point estimates of γ range from 1.18 to 1.39 across the four

separable specifications tested; see Table 2. This equates to an estimated EIS

of between 0.74 and 0.85. In the context of Euler equation-based studies, the

GMM estimates are relatively precise with standard errors around between

0.17 and 0.24. The estimate for γ of 2.4 from the linearised Euler equation

is quite a bit higher than the GMM estimates, but is very imprecise. This

specific finding is very similar to that in Alan et al. (2009) using PSID data.

Their simulation exercise in the same study highlights that estimates of γ

based on linearised models are prone to severe biases in cases where the time

dimension is less than 30 years or so (see also Attanasio and Low (2004)).

As noted above, β and σ2
η are not separately identifiable without further

assumptions (or additional moment conditions). In models 4 and 5, we as-

sume that measurement error accounts for 80 per cent of the overall variance

in consumption growth, a proportion guided by our separate estimates in

Table D.1. Given the variance in the Australian consumption data, this

implies a measurement error variance of around 0.095 and yields estimates

for β between 0.92 and 0.96 across two specifications.

The coefficient on change in household size gives an explanation for the ob-
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Table 2: Euler equation estimates

(1) (2) (3) (4) (5) (6)
Log. Lin. EGMM EGMM EGMM EGMM EGMMn

Coeff. of relative risk aversion (γ) 2.381 1.364 1.285 1.389 1.18 2.245
(1.261) (0.166) (0.202) (0.236) (0.199) (0.734)

Discount factor (β) 0.921 0.962
(0.061) (0.023)

β/Meas’nt error in consumption 0.761 0.806 0.744
(0.065) (0.081) (0.226)

Household size (θ) 0.524 0.358 0.329 0.376 0.294 1.445
(0.28) (0.069) (0.077) (0.093) (0.068) (1.115)

2008 dummy -0.074 -0.07
(0.01) (0.05)

Constant 0.007
(0.004)

Inflation measure for real interest rate Survey Survey Survey Survey Bond M. Survey
Instruments**:
Lagged interest rate Yes Yes Yes Yes Yes Yes
Lagged consumption growth No Yes Yes No Yes Yes
Households 7225 6227 6227 7225 6227 3249
Observations 44966 35254 35254 44966 35254 16430

EGMM = exact GMM; EGMMn = exact GMM with non-separable preferences.
Standard errors in parentheses.
* Measurement error variance set to 80 per cent of variance in consumption growth,
consistent with our findings in Appendix D.
** The set of instruments also includes a constant in all equations, as well change
in HH size and the GFC dummy where present for columns (1) to (5). Lagged
changes in household leisure time, and age and age-squared of the household head
are also included for the model in column (6).
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served hump-shaped profile of consumption over the life cycle, and is relevant

for the construction of equivalence scales (see Gourinchas and Parker (2002)

among others). Given our sample of households is restricted to couples who

have stayed together, this coefficient basically measures the marginal utility

associated with an extra child. The estimated coefficient averages about

0.3 for the GMM estimator, with a somewhat higher estimate of 0.48 using

the linearised model. These estimates are in the range of those obtained in

international Euler equation studies using food expenditure (for example,

as Attanasio et al. (1999)), but somewhat below those in Alan et al. (2009).

In the non-separable model, we estimate a coefficient of relative risk aversion

of 2.23 (column (6)). While somewhat higher than the separable model es-

timates, the much larger standard error indicates no statistically significant

difference from the separable estimates at standard confidence levels.

We run a series of tests to check the sensitivity of our results to sample

selection. We find that the exclusion of consumption growth outliers has

very little impact on the results, nor does introducing a requirement that

a respondent appears in at least five consecutive waves (as per Alan et al.

(2009)). However, we find that including households whose head has begun

or ended a marriage or de facto relationship during their time in the panel

leads to implausibly low estimates of γ (well below 1) and instability in the

GMM estimation procedure. In column 5, we experiment with an alternative

real interest rate series, which is calculated using the inflation rate derived

from market pricing of inflation-linked bonds. This leads to an only slightly

lower estimate of γ.
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Comparison with international estimates

Overall, our point estimates of γ for Australia based on the non-linear Euler

equation are within the range of recent estimates obtained in the US.23 In

the most comparable US study, Alan et al. (2009) shows GMM estimates of

γ ranging from 1.15 to 1.53 using data from the PSID, with a preferred point

estimate of 1.45.24 Our estimates of γ are also within the range of estimates

found in Gourinchas and Parker (2002), who use the quite different approach

of simulated method of moments. However, as noted earlier, these moderate

estimates of γ contrast with the very high values needed to explain the large

equity premium in the US (Kocherlakota, 1996).

6 Conclusion

Testing the CRRA assumption empirically is crucial as it underpins many

theoretical and applied models of decision making under uncertainty, and

our paper provides some qualified empirical support for the CRRA assump-

tion for Australia. That said, given the difficulties associated with measure-

ment error in the wealth data as well as the deeply endogenous relationship

between risky asset share and wealth, further studies are needed to increase

the level of confidence in this result. Such future studies will benefit from

additional waves of panel data and may be able to approach the question

from a different angle to ours, perhaps relying also on the subjective data

in HILDA.
23We found very few recent studies outside the US.
24For comparison, their estimates of β ranged from 0.87 (which the authors considered

implausibly low) to 0.99
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While informative, our Euler estimates of the coefficient of relative risk aver-

sion γ are also subject to uncertainty. Other approaches, such as the more

structural simulated method of moments technique established by Gourin-

chas and Parker (2002), should be used to confront our results given the

heavy reliance on this parameter in applied policy analysis.

A recent working paper by Iskhakov and Keane (2018) estimates a value of

0.8 for γ using simulated method of moments combined with HILDA data.

This implies a much lower degree of relative risk aversion than we find.

Our estimates of γ also have interesting implications for precautionary saving

that could be explored further.25 In particular, Kimball (1990) shows that

for consumers who face income (or other) uncertainty, the strength of the

precautionary saving motive depends directly on their degree of prudence.26

With CRRA preferences, our preferred estimates of γ imply a coefficient

of relative prudence (given by CU ′′′(C)/U ′′(C)) between 2.2 and 2.4.27 A

structural life-cycle model could be used to explore what this implies for the

proportion of household wealth attributable to precautionary saving. We

are unaware of any Australian studies that have looked at this question.28

25There is a large empirical literature devoted to measuring the proportion of household
wealth attributable to precautionary saving. Somewhat frustratingly, this literature has
produced a very broad range of estimates. See Lusardi (1998) and Carroll and Samwick
(1998) for examples at either extreme.

26Deaton (1991) and Carroll (2001b) among others point out that the prospect of a
borrowing constraints can cause households to engage in precautionary saving even when
the utility function does not exhibit prudence.

27As explained above, under CRRA preferences, the degree of relative prudence is simply
equal to γ + 1.

28Hanel and Haisken-DeNew (2017), using HILDA data, find a large effect of uncertainty
on savings (ie, a strong precautionary saving motive), but do not quantify its contribution
to overall household wealth.
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Appendix A Sample selection

Table A.1: Sample selection for the risky asset share regressions
Dropped Remaining

Unbalanced panel of respondents 317,738
Keep years for which there are wealth data 241,025 76,713
Keep working age 38,730 37,983
Keep household heads 17,280 20,703
Keep positive risky assets 1,250 19,453
Additional observations were lost in first differencing and because
instrumental variables contained some missing values.

Table A.2: Sample selection for the Euler equation analysis
Dropped Remaining

Unbalanced panel of respondents 317,738
Keep couples who did not split up 36,423 281,315
Keep couples 151,319 129,996
Keep HH heads 54,347 75,649
Keep non credit constrained housheolds 36 75,613
Keep working age 1,717 73,896
Keep non-missing data 19,887 55,726
Additional observations were lost because of the presence of lagged variables
in the equation and the instruments.

Appendix B Relative risk aversion estimates by

net worth

Table B.1: Median relative risk aversion estimate based on risky asset share
Net worth quartile Equities and shares +Bond-like assets +Bus. Equity and Super
Bottom 2.24 2.15 1.1
Second 2.6 2.44 1.1
Third 2.47 2.28 1.09
Top 2.43 2.01 1.08
Overall 2.47 2.18 1.09
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Appendix C Impact of measurement error in wealth

on risky asset regressions

Research on the impact of measurement error in household panel data has

mainly focused on income and expenditure data (see Bound, Brown and

Mathiowetz (2001) for a discussion), but it is likely that wealth data also

suffers from substantial measurement error. This appendix explores the

impact on the estimated relationship between risky asset share and wealth.

We begin by assuming that the logarithm of household wealth, log W ⋆
h , is

normally distributed with mean µW and variance σ2
W ⋆ , where the star de-

notes the true value of the variable.29 Each household invests a share α⋆ in

risky assets W ⋆
p and (1 − α⋆) in risk free assets W ⋆

f .

Observed assets are subject to multiplicative measurement errors up and uf ,

so that Wj = W ⋆
j uj for j = p, f . We also assume that log(up) and log(uf ) are

normally distributed with mean zero and variances σ2
p and σ2

f respectively.

We further assume zero correlation between the two measurement errors.

For simplicity, we also assume that households have a common risky asset

share α⋆
h = ᾱ⋆. In this setting, cross-sectional variation in W ⋆

p and W ⋆
f are

driven solely by a household’s wealth level. Observed wealth, W , and the
29From now on we suppress the subscript h unless it is needed to remove ambiguity.
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observed risky asset share, α, are then given by:

W = W ⋆
p up + W ⋆

f uf

= α⋆W ⋆up + (1 − α⋆)W ⋆uf

α = α⋆W ⋆up

α⋆W ⋆up + (1 − α⋆)W ⋆uf
(1)

We are interested in how measurement error of this kind affects OLS esti-

mates of β1 in the following regression:

log(αh) = β0 + β1 log(Wh) + ϵh (2)

In the absence of measurement error, OLS estimates of β1 are unbiased and

consistent and equal to zero given that the correlation between α⋆
h and W ⋆

h

is zero by construction. However, in the presence of measurement error, the

covariance between αh and Wh becomes:

Cov(log αh, log Wh) = Cov[log(α⋆W ⋆up + (1 − α⋆)W ⋆uf ), log( α⋆W ⋆up)

− log(α⋆W ⋆up + (1 − α⋆)W ⋆uf )] (3)

This will generally not be equal to zero as measurement error affects both

the dependent and independent variables. This fact also makes the direc-

tion of the bias ambiguous, as it will depend on the precise values of ᾱ as

well as the relative variances of the measurement errors. While there is no

way of analytically quantifying this covariance expression, and therefore the

direction and size of the bias, we can evaluate it numerically by simulating
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a large number of draws of W ⋆, up and uf .30

Figure C.1 shows how the bias in OLS estimates of β1 varies with different

values of ᾱ based on the numerical evaluation of equation 3. The simulations

assume that the variances of log(up) and log(uf ) are equal to each other and

imposes a signal-to-noise ratio of four (ie, σ2
r and σ2

f are one-quarter the

variance in log(W ⋆)).31 For values of α at or below 0.5, OLS estimates of β1

have a negative bias that becomes more severe as ᾱ gets smaller. For values

of ᾱ above 0.5, the bias in β1 is positive but of relatively small magnitude.

In short, the most severe (negative) bias in estimates of β1 are likely to occur

when the average risky share is less than 0.5, which is the situation we face

in the main text.

30The covariance depends on non-linear transformations involving the sum of two log-
normal random variables, which itself has no close form.

31The simulations involved 1,000,000 random draws of W ⋆, up and uf for each value of
ᾱ.
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Figure C.1: Bias in OLS estimates of β1
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Appendix D Estimates of measurement error in

grocery data

This appendix estimates the variance of measurement error in grocery ex-

penditure data, which is an input into our Euler equation analysis in the

main text.

We begin by making the common assumption that measurement error is

multiplicative, so that Ci
t = ηh

t C⋆
t where C⋆

t is the true (unobserved) con-

sumption for each household h.32 We further assume that the measurement

error ηt is an MA(1) process such that log ηt = ϵt + θϵt−1 where ϵ is a nor-

mally distributed iid error with with constant variance σ2
ϵ . Consumption

growth is then given by:

∆ct = ∆c⋆
t + ϵt + (θ − 1)ϵt−1 − θϵt−2 (1)

This implies the following variance and first- and second-order autocovari-

ances for ∆ct:

Var(∆ct) = Var(∆c⋆
t ) + σ2

ϵ + (1 − θ)2σ2
ϵ + θ2σ2

ϵ (2)

Cov(∆ct, ∆ct−1) = (θ − 1)σ2
ϵ − θ(θ − 1)σ2

ϵ (3)

Cov(∆ct, ∆ct−2) = −θσ2
ϵ (4)

where the autocovariance in true consumption growth one or more periods

apart is assumed to be zero.33 With three equations in three unknowns, the
32To avoid notational clutter, we suppress the h superscript from now on.
33This key identification assumption is equivalent to assuming that consumption is a
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system is identified and can be estimated using generalized method moments

(GMM) given at least four years of panel data.

We fit this model using data on self-reported grocery expenditure from

HILDA’s self completion questionnaire (SCQ) for the response of the house-

hold head and separately for the head’s partner.34 We also provide estimates

model based on the spliced grocery and meals out series used in the main

text, which covers a slightly longer period, from 2004 to 2016. In the latter

case, the data is averaged across multiple responses from a single household

where applicable.35 Our GMM estimation is based on the identity weight

matrix.36

Table D.1: GMM Estimates of measurement error in expenditure data
(1) (2) (3)

Expenditure measure Groceries Groceries Groc. & meals out
Data source Head SCQ Partner SCQ Av. SCQ & HQ
Period 2006-2016 2006-2016 2004-2016
Var. of true cons. growth (Var(∆c⋆

t )) 0.0483 0.0593 0.0205
(0.0158) (0.0172) (0.0018)

Variance of meas’nt error (σ2
ϵ ) 0.1001 0.0911 0.0699

(0.0142) (0.0158) (0.0025)
MA(1) coefficient (θ) 0.0969 0.0356 0.0454

(0.048) (0.0889) (0.015)
Proportion of Var(∆ct) due to Msmt. Error (%) 79 76 87
Num. of obs. 5502 5502 55554

�

Standard errors in parentheses.

martingale with drift, which is a common assumption in dynamic models of household
consumption (see for example Blundell et al. (2008)).

34We restrict the sample to couple households where both members provide a unique
response.

35The expenditure section of the SCQ can be completed by anyone in the household
with “any responsibility for the payment of household bills...”. Wilkins and Sun (2010)
show that around one quarter of households provide more than one response each year.

36Altonji and Segal (1996) show that the identity weight matrix is superior to the
‘optimal’ weight matrix (the variance of the sample moment conditions) when estimating
models of covariance structures in short panels. Also, with unbalanced panel data, there
is no guarantee that the variance of the sample moment conditions will be positive semi-
definite matrix, a problem that we encountered occasionally.
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The estimates in Table D.1 imply that measurement error accounts for some-

where between 76 and 87 per cent of the variance in observed growth in

grocery expenditure. This is within the range of international estimates, al-

beit towards the upper end. Interestingly, the process of averaging grocery

responses across multiple household members, while reducing the noise, ap-

pears to reduce the signal even more so. This results in a higher estimated

proportion of measurement error in this case (see column 3). The estimate

of the MA(1) coefficient is significant in the first and last cases.
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