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We also need to find Eg ,(p,, Ng,), the optimal amount of coal, in terms of p, and N ,.
Substituting (20) into (10) for e¢ and rearranging yields:

_ Ys: a 1 B e
€s QPStESt Bps,tl PNg,Ey, Lg,
Then solving this for the coal quantity we have:
-8
O{NS t 1-a-B 1
ES,t<pt7NS,t> = ( 5557 > pS,tliaiﬂ(pt)LS,t(pt) (22)
Inserting (22) back into (20) gives:
18 o8
1 /3 aNS ‘ 1 a—f 1 1 1a B
YS,t<pt7NS,t> = NS’t p ( ¢) ( > ps,tlfafﬁ(pt)[fs,t(pt) L (p:)
B 563
N == e
s, 1-a- o\ T-a-B a+B
= ( t) (—_> ps,tlfafﬁ(pt)[’s,t(pt) (23)
B €s

Inserting (19) and (23) into (8) then gives the equilibrium output price ratio in the form:

YM,t<pt7 NM,t)
Ys,t (pt> NS,t)

Lastly, (6), (7), (14), and (15) are the functional forms used in (37)-(38).

Ip, 7 = (36)

Appendix 2: Derivation of Equation (34) for ng ,, the Growth Rate of Solow
knowledge

The Solow-sector version of (33) is
ANg, B S L(:%)

— 1 1 o oa— — —
Ng ¢ = = NS,}f (77"’/(1 - B)) (ps tES tLl 6>1 ’ (A1)
Ng,
and
alN el
S\ “
ES,t<pt7NS,t> = ( > LS,t(pt) Ps ' (pt) (22)
Beg
——5((3%)
9515 (aNg \Te P e vy
=By, = ( Bés > Lg7™ ps AT es
Inserting this into (A1):
= ns,t
2 i) (o \TaBTw) e vy e v awv 1 liecfu
_ 1-v B\1-v a—B\1-v B\1—v B\I—v/1—a—B 71 (1-B) ‘\1-v
Nshniv( =) o () N L L,
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Appendix 3: Signing the slope of the relative supply curve y*(Ny, Ng, p)
To sign this slope, we take the log of y*(N,,, Ng,p) (39):

p-(o-1)A-a=p)
1—p

Iny® = constant + Inp +

a((lc—1)(1—a—p)—1)
(e =11 =pB)(L—a—=p)

where constant is the terms that do not depend on p. We then take the derivative with respect
to p, multiply the result by p, and simplify:

In(1+Top~lo-Y)

(U)_alnys_5—(a—1)(1—a—5)_a((a—1)(1—a—5)—1) re
T oy -4 T 0 a8 p il

We then rearrange the first term:

0'—1_1_5_ a((o’—l)(l—a—ﬁ)_D e
o B _
plo) = (1-8)/1—a-p) (1-8)1—a—p) po-l 4 T (AZ)

Ifo<1+ 1_5_ 3 (<1+ m) then the first and second terms are both positive and hence

p(o) > 0, so that the relative supply curve is upward sloping.

ol B
Ifo>1+ ﬁ, asp — 00, p(o) — —ﬁ < 0, and so the curve slopes down. As

py — 0,

B(o-D)(1-ap) _allo=1—a=p)-1) _ 1
plo) = -5 T T p—ap  1-ap 7 (A3)

= 1.905 for our baseline parameters, the curve slopes down for all p,; but if

So,if 0 > 12—

1+ 1_5_ 5<0< ﬁ, the curve is backward bending, i.e. sloped upward for low p but

downward for high p.

Appendix 4: Proof of Proposition 1 on Comparative Statics

Combining Equations (40) and (41), the derivatives in Proposition 1 in elasticity form are:

— 1
5lnyt/8lnNM7t = m
_ o 1
Ony, /OE,, = 5 (p(o)/a n 1>
_ o 1
Olny, /Olneg = Tp—" (p(o)/a n 1)
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_ 1-3 1
dlny, /0Ny, = — ( )
nyt/ n S,t 1—a— ﬁ p(O’)/O’ n 1
«Q 1
Ay, /oL, = — ( )
ny, /L, 1—pB\p(o)/o+1
As we show in the followmg, i o> 0, hence the signs of the derivatives in Proposition 1 are
1—a—,8

in N),, and Ny, i.e. Aln(N,;,) = Aln(Ng,) > 0, hence Aln(N,) = 0, results in lower y;.

To showw > 0 we need to have @ > —1. Dividing p(o) from (A2) by o yields:
plo) Bf—(o-—DU-a-F ofc—DA-a—FH—-1) 17 (A9)
o o(1—p) cl-PU0—-a—-p p1+I7

We have 1 > e 1 = > 0. Evaluatmg (A4) using the limiting values of ol—m as p goes to
ZEro or mﬁmty, we have for Ul_+FU =1:

B—(o-D-a=p)l-a-pF—al(c-1)(1-a=p)—1) 1 .

o(1=p)(1—a—=p) o(l—a—p)

forpc%ira =0:

B-(o-D(l-a—p) _ 1l-a (1-a-§
o1 ) o1-B  (1-P

So, in both cases, and therefore, in intermediate cases as well, @ > —1.

Appendix 5: Exploring when an increased elasticity of substitution, o,
decreases@

Here we explore the relevant values of o, mentioned at the end of Section 4, for which

ap
e E%)/c’ 0. Since (g/°) =2 — L <0 if % < 0, we investigate whether g—g < 0 for the

parameter values and range of p needed for the pre-industrial stagnation analysis in Section 5.2,
using (A2) for the supply elasticity p(c) = A2 whence:

— Olnp’
Oplo) _—(1—a—f) « re a((c—1)(1—a—pB)—1)T7p" (Il — Inp) (A5)
oo~ 1-F U= ppi+lr (1=fl-a—p (7 L)
ag is definitely negative forp < T'and o0 > 1 + 5 and vice versa. These are the relevant

conditions for our discussion in Section 5.2 of Pre-lndustrial Stagnation, hence our conclusion
in Section 4 that "for...parameter and price values...relevant to the Pre-industrial Stagnation

behavior discussed in Section 5.2... p ) decreases...with i increasing a.'
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We also note that it is negative for a much broader range of values than this as shown by the
supply curve shifting from positively sloped to negatively sloped in the previous section.
Applying L’Hopital’s rule to (AS) we find:

lim 9 l1l—a—p§ lim 9p _

= L=
p — 00 9o 1-3 7 p—000

As p(o) is monotonic in p (see (A2)) if p(o) declines sufficiently as o increases, for example
from positive to negative at both extreme values of p, it must also do so for all intermediate
values of p. Such changes must also preserve the relevant concavity or convexity properties of
(A2). However, this does not preclude p(o) locally and temporarily with increasing o for some
intermediate values of p. Evaluating (A5) numerically for different parameter values shows
that it is usually negative, though it is possible for o close to one to get a positive derivative
for some range of low values of p. So, there are minor exceptions to our statement above that
p(o)/o declines with increasing o.

Appendix 6: Derivation of Equation (45) for Ay, = 0 Isoclines in Figures 6a
and 6b

Inserting L ;(y,) from (14) and pg , (y,) from (6) into (22) for coal use:

O‘Ns,t
pes

- Hilras) L
) [(1+Ty, 7 ) =mp]7 :

— F., = S —
S5t ( 1—|—Fyt%

E Beg \ " By (1+Ty, ") =)
_ M _ ( S ) L_M t (B6a)
¢

(1 — 7)7r(=as)
Substituting this into (21) we have:

_ aoc(1-8) — oo (1 + 1‘\ %) a0(1—$(17é76)>
ytlm(o*—l) - F(l_a)oNt(l—ﬂ)a ( Beg ) s (EM> “ 5 (A6)
aNg, L, (1— 7)%(@)

Taking logs then differences, and substituting Ay, /y, = Aln(y,) gives (see the Annex at the
end):

l1+alc—1)+ (;;fﬁﬂjy?
1+ Fy?

Alnly) = o1~ §) Aln(Nyy) ~ o7 An(N,)

— ao Aln(L,) (AT)

Using Aln(Ny,,) = n,Aln(Ng ;) = n,Aln(N,)/(n, — 1) then gives, after further algebra
(again see the Annex):

I1+alc—1)+ (li;€ﬁ>Fy?
1+ Fy?

(n, — 1) Aln(y,)
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1 —
— o(1—B) (m _ %) Aln(N,) — (n, —1)ao Aln(L,) (A8)
— a —_—
With constant population, Aln(L,) = 0, we have from (A8) and (32):
1-8 l—a—p/"" o1
> > < v v
with Ay, = 0 being below the AN, = 0 isocline as shown in the figures; and since ——2- > 1,

l1—a—p
Ay, > 0 below the Ay, = 0 isocline and < 0 above it, also as shown. With population growth,

the Ay, = 0 isocline is given by (1 — 38)(n, — 1i;58)Aln(Nt) — (n, — acAln(L,) = 0,
so that:

—p

1_04_5 1—v , o1y,
m and thus Nt < <—> T y( 7 ) (Ag)

Ay, = 0 where n, > 1_3 "

Appendix 7: Proof of Proposition 2 on Existence of Pre-Industrial Stagnation

To prove Proposition 2(a), we first need the following Lemma:

LEMMA. Given High substitutability, constant population and Assumption 1:
(i) the locus of all points in (y,N)-space where An, = 0 is

oy __(0=D—a=p -1t [o-D0-p)— (I

t ' (c—D1—2a—B)—1+ [(c—1)(1—a-p8) - (=5)]Ty~

1—a-3 (L*l)l*a*ﬁ

Fzy“

(ii) n falls along the An, = 0 locus (A10) as it rises in (y, N)-space, and (410) lies strictly
below, and asymptotically (as y — oo) approaches, the locus defined by

aed o (LF) 1-B)le—3) _ n (A11)

(l-—a=p)(c—0o) 7
Proof of Lemma: (i) We find the An, = 0 locus in (y, N)-space by taking logs then the

1—a— o-1\l-a—B _(1=8
differences of (32) with Assumption 1 inserted, n, =1" « ﬁyi e N 55)

t
setting Aln(n,) = 0:
c—I\1—a—p 1—p
= Al — ——Aln(N,
0= (=) ——FAm(y,) ——=A(N,) =

o

1-a—p8 o—1

r

, and then

Aln(N,) _ (a— 1) 1 —a—ﬁ(Am)

Aln(y,) 1-p
Substitute this in (A8) with Aln(L,) = 0, which relates the growth rate of y and N given

o

constant population, and multiply by (1 + Fy?) :

[1 +a(oc—1)+ (%) Fyt] (n, — 1) Aln(y,)
= (14157 ) (1= 8) (m— ) Al
= <1+Fy?> a(1—p) (nt_li;fﬁ> (0;1> 1;525&11(%)
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Divide by Aln(y,) and rearrange:

1

— [1 Falo—1)+ (%)ry?] (n, —1) = (1 + ry?l) (1—a—B)(oc—1)(n, — =2

l—a—

= (14757 ) (A~ 0= B)o— 1)~ [1+alo— 1)+ (27 | = [(1+

Ty ) (1—a—B)o—1)—{1+ale—1)+ )Ty }n,

The An, = 0 locus in (y, N)-space is thus:

1-a— o-1\1-a-p _(1=8
TL(y,N):F a5y<0> a N (a)

t t

=D (1417 ) = [1+alo— D+ (ZZH)ry]
(c=1)(1—a=8) (14Ty" ) = [1+alo—1) + ()Y
o— —a—f)— o— —B) — (=L i
__e-Dia-f-tr[e-va-p- R
(c—D(1—-2a—8) -1+ [c—1)(1—a—p)— (Z5)|Ty

(ii) Now by straightforward algebra (see Annex at the end), provided o > o', n falls as y rises
on locus (A10); and from (A10) and (43), the asymptotic lower bound of n as y — oo is

, _ (e )-B)-(255) _ (1-Be—5) _
limy oo (y, N) = (- D(1-a—p)-(t5ls)  (-a—Hlo—oT) — "Moo (All) m

So, the An, = 0 locus lies below the curve n(y, N) = n

[o ol

Proof of Proposition 2(a): Since & < o', n_ > (ﬁ;é)ﬁ), hence the curve n(y, N) = n_, lies

below the Ay, = 0 locus n(y, N) = 1_1;f 5 SO all development paths below n(y, N) = n_,
have rising y,. And by Lemma result (ii), » falls along the An, = 0 locus as it rises from left
to right in (y, IV)-space, hence the locus crosses upwards over curves defined by n(y, N) =
constant. By the definition of the locus, all development paths that cross it are locally tangent
to the curve with n(y, V) = constant at the point of crossing; and because the locus lies below
n(y, N) =n, y, is increasing along those paths. So, all development paths that cross the
rising An, = 0 locus do so from the left, above the locus, to the right, below it, which means
they can never rise above the locus later. Such paths therefore have permanently rising y,, the
definition of Pre-industrial Stagnation, and moreover An, > 0 forever once they cross the
An, = 0 locus. So there is a separatrix in (y, IV )-space above the An, = 0 locus but below the
Ay, = 0 locus, such that all development paths below the separatrix have forever rising y, and
eventually forever rising n,, and all development paths above the separatrix eventually cross
the Ay, = 0 locus, with Ay, < 0 thereafter. m

Proof of Proposition 2(b): We first prove that o < o' (Medium or Low substitutability) means
all paths under the Ay, = 0 locus in (y,N)-space eventually rise to cross the locus upwards. For
this, we need to show that at any point under this locus, the slope of the path through that point

—1\1-a—p 1-8
1—a—p (774)=5—F

is steeper than the curve n(y, N) =T ) o Nt_( +) = n, where n is a constant,

through that point. That is, from (A9) and (A8), we need to show that:

_ 1-3 1—-5
{n>—1—a—ﬁ(> 1) anda—1<—(1_a_ﬁ)2}

)
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-8 oo | (7
AN, 1+ ale—1)+ (ZZ)y,7 | (@ -1) . (A—lao Aln(L,)
o _ _ o1 — 1-8
Aln(y,) o(1—B) (7 — =) (1 + Ty ) o(1— B)(n— 225) Aln(y,)
S o—1
U(li;€B>
Since n > 1;?5, Aln(L,) > 0 always, and Aln(y,) > 0 below the Aln(y,) = 0 locus, the
second term on the LHS is > 0. So it will be enough just to prove that
1+ ale—1)+ (2520, | (1)
>(c—1)(1—a—p) (A13)

(1417) (229

The proof of this by straightforward but tedious algebra is given in the Annex.

Then from (45) and (44), all paths above that isocline eventually cross the AN, = 0 isocline
leftwards into the region where AN, < 0, Ay, < 0 forever, as in figure 6a.m

Bounding elasticity value, o'. Finally, we show how from (46) we can derive o', the threshold
value of o for which the growth of the cost share ratio will first be able to outweigh the
diminishing returns to knowledge. Expanding and rearranging (46) and using derivatives from
Proposition 1:

l—a— —1 0l 1-—
Alnn, = a—po Oy, _ b AlnN,, ,
o o OlnN,, o ’
l—a— -1 1-— | 1-—
_(Lze=be f_ Oy, 175 A, (A14)
a o 1l—a—p0lnN,, a ’
Substituting in s — = —2— from (40) and (41):
l—-a—Bo—1 1—
= Alnn, = ( a—po — ﬁ) AlnN,,,
(e} p+o Q ’
l—a—Bo—1 1-— 1—
- ( a—Po b__a _ B) AlnNy,, (A15)
Q c l—a—pfp+o «@ ’

The necessary conditions for Alnn, > 0 is that the coefficient of AlnlV,,, here is positive,
and if it is close to zero then AlnNg, — 0. In the bounding case where we set the coefficient
to zero and cross-multiplying and simplifying, we have the condition:

I—a=p)c"=1) =1 =B)p+0o") =0
Now substituting in the formula for p for the case where p = 0 from (A3):

1

(1—a—5)(UT—1)—(1—B)m:0
=l =1 + (liloj_ﬁg»)r u

As o increases, at first the zone of preindustrial stagnation will appear in the bottom right of
figure 6b where very relatively abundant wood results in relative output, y, being very high
given relative knowledge stocks, N.
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Appendix 8: Proof of Proposition 3

Proof of Proposition 3(a), Existence of Modern Economic Growth zone
Taking differences of the log of (47) gives Aln(y,) = o[(1 — 5)Aln(V,) — a Aln(e,)], and
substituting this, and Fy? = Nt%ntl;vu from (32), into (A8) gives:

ol\o — i %n 1;’11/
o [l Falo =+ (e Ve } (n — DI(1 — HA(N,) — aAln(e,)]
1+ Nywny v
~o [(1 _8) (nt _ %) Aln(N,) — (n, — 1)aA1n(Lt)] (A16)

After much further algebra in the Annex at the end, this yields:

1-v

(1 +alc—1) N ant”

1—3 1_@_5> (n, —1) Aln(e,)

11w - 1+ N‘l’nl;“u
= Ha —o+(0—1) (1 + N/n,” )}nt — (o0 — a)] Aln(N,) + (#) (n, — 1) Aln(L,) (A17)
From rearranging (A16) with Aln(L,) = 0, Ae, = 0 when:
n, = i , <1 when o>ao (A18)

o— &+ (5—1) (1+N§n?”)

and given o > &, this does have a solution with 0 < n, < 1 (AN, < 0) for any permitted
parameter values. From (A18), Assumption 1 (35), and (48) (which uses Assumption 1):

n, = oc—0 S Fa(l—f—met_(a_l)(l_a_mNW
o—0+ (6 —1)(1+ Nasn, ")

L o= o

Fa(lfsfﬂ)

_ Nwet—(a—l)(l—a—ﬂ) [0 —14(6— 1>Fget—a(g_1)Nt(l—ﬁ)(a—a)ﬂ};?ﬁ

Now take total differences, using (1 — 3)(0c — o) + 1;?5 =(c—1)(1—-p):
= 0=
(1-p)(l—a—pB)(oc—05) N, [ oo )-0ep) [5

«
+ (5 _ 1>F0Nt(a—l)(l—ﬁ)et—a(a—l)] ANt

—(e—1)(1—a—B)N, T He DL g

+ (6 — 1)F0Nt(0—1)(1—ﬁ)et—a(a—1)] Ae,

+Nt(1—/3)(17?;6)(0—’5)et_(g_l)(l_a—/a)(5 _ I)F"[(U — 1)(1 _ ﬁ)]Nt(0_1)(1_ﬁ)_1€t_a(0_1)ANt

LN, e~ 1=a=8) (5 — )TV a(o — 1)N, V0B, male-1-1 A,
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:>{ )(1—a— 5 o-5) Nt[w] Le, oV B)[g 1 4 (5 —
(1-p)(1-a-p)(o-7)

DTN, 7 e male=D] 4 N, e et D) (5 — )T [(0 — 1)(1 —
B)]Nt(0'_1)(1_/3)_16t—o¢(0—1)} ANt

_ { o—1) (1-B)(1-—a— B) (o— a)et_(a_l)(l_a_ﬁ)—l [O’ -1 + (5- _
1)PO-Nt o—1)( ﬂ)et alo— 1)] + Ntwet_(a—l)(l—a—ﬁ)(a‘. _ 1)F0a(0- _
1)Nt(a—l)(l—ﬁ)et—aw—l)—l} Ae, (A19)

The bracketed expressions multiplying AN, and Ae, are both unambiguously positive, so
AN, /Ae, > 0, i.e. the isocline is upward sloping. That Ae, > 0 above the isocline and < 0
below it then follows from the signs in (A17). m

Proof of Proposition 3(b) Strong Equilibrium Bias in Modern Economic Growth zone

By part (a), the Modern Economic Growth zone will lie strictly below the AN, = 0 isocline in
(e, N)-space, so y, is falling throughout the zone. Now consider coal use (22) expressed as a
function of (y,, Ng ,):

18
aNS 1 a—F3 1
ES,t<yt7NS,t> = ( ﬁe;) ps,tlfafﬁ(yt) LS,t(yt)

Substituting pg ,(y;) from (6) and Lg ,(y,) from (14) converts this to

aNg \T-a5 (o2
ES,t<yt7NS,t> = ( Bé?t> (1—7)t “ilra=s ﬂ)<1 + Fyt ) kS )Lta (A20)

which is rising, since Ng , always rises, y, is falling, and 0 > & > 1. So we have rising relative

coal use Fg ,/ E,, despite a rising relative coal price /e M (since e, = e, /eg is falling,
by definition of a MEG zone).

Appendix 9: Result on Strong Equilibrium Bias in Pre-industrial Stagnation
Zone
Because we already know that e is increasing unless we are below the Ae = 0 isocline in

figures 7a and 7b, in order to determine where strong bias to wood can happen, we just need to
check when coal will decline as p declines. Looking at the demand for coal again:

1-8

aNS 1-a—p3 1

Es,t<pt>NS,t> = ( Be ’t> ps,tlfo‘fﬁ(pt) LS,t(pt)7 (22)
S

any positive AN, increases optimal coal use, ceteris paribus. The increasing price of Solow
goods, pg ,, as the economy becomes more Malthus specialized also will raise coal use, ceferis
paribus. We therefore need to have a strong enough decline in labor used in the Solow sector
to overcome these positive effects and allow coal to decline. For this to happen the elasticity
of substitution between the goods must be high enough to allow enough substitution from the

Solow good to the Malthus good to allow enough flow of labor between the sectors. Using (6)
and (14) we have:
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1
1 _o (1 + Fapl_a)(oil)(liaim
pS,tlioﬁB(pt) Ls,t(pt) = (1 - 7>071Lt 1 +trap1—a
t

1-(o-1)(1-a-B)

= 6(1+ Topr) T = g

Next determine %:
1Y
dz B 1-— (0’ — 1)(1 —a— ﬁ) 1-2(o—1)(1-a—8)

- 1— 14+T9pl=9) (e-Dl-ap [Tp°

dp (0'—1)(1—04—5) ( U)( + pt ) pt
Ifo>0=1+ ﬁ, then g—; > (. So, these terms are declining with declining p (and, therefore
rising y) as long as o > &. A minor rearrangement of equation (34) (using Assumption 1, so

o vy q
that N;:tafﬁ(l’“) =1):

ANg, 1 % [ @ \Uwilap / 1 v
JR— % 1 — > (__) ( 1704—5L > A21
Nsﬂg (77 V( B) Bes pS,t S.t ( )

shows that exactly the same term, z, drives AN ;. Therefore, if o > & and p is declining, N ,
will eventually converge to a constant and coal use can decline.

It is harder to determine over what zone of the phase plane there is strong bias to wood. A
simple comparison of the direct and indirect effects of z on Eg , in (22) is difficult because the

level of z affects Eg, both directly and via the change in Ng, through (34). Using the
comparative statics framework in Section 4 to find the effect of an exogenous change in Ng ,
on Eg , will also need to take into account how much N, , changes, because that also will
change the price ratio, p.

However, unless o > o', all paths which initially have falling coal use eventually end up with
rising coal use. This is because, initially, the price ratio, p, was falling strongly enough to reduce
E , by more than growing N , increases it. But the rate of decline in p slows and the level of

z remains sufficiently high that through (34) technical change can dominate and increase Eg ,

again.

We derive equation (51) by first rearranging e, (E,, N,) = F"/QE;UQNF_’B)(U_WO (50) into
I

N,(e,, E,) = F<1*6><0*1>ef’ﬁ)(”’”EtﬂfB)l(ofl), Inserting this into n.(e,, N,) =

(A-B)(1-a=p)(e-7)

[ —(e-D1-a=p)

a e, (48), and rearranging, gives

(c—1)(1—2a—pB)—-1 (o-1)(1—a—B)-1

ny(e;, By) = Fa(‘f’l)et A A (51)

Appendix 10: Proof of Proposition 4 on Asymptotic Growth Rates

Here, we denote growth rates and asymptotic growth rates for variable X, thus:

AX,
X

with PS and IR subscripts added as needed.

AX
= ¢g(X,) and lim t = 900 (X)),
¢ t—o0 Xt
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By definition y, — oo under PS; and by (7) and (15):

lim p,,;, = lim (1 — )1l (yt_% + F)ﬁ = (1 —~)o1l%"1 and

Y4~ 00 ’ Yy~ 00
L,r
lim L,,, = lim =L,
Yp—00 yi—oo ' Y, e
and inserting these limits into (52) gives:

. ANy, o 7l-a—B\aih

gooPS<NM,t> = t—>1c1>on:lPS Ny, = t_}éomps)‘MNMt<pM By Ly ) 7
_ 1-a—p8 (1-a—pB) 106{ g;

= (dim Nid ) Ay 5 (1 ) e e LI = 0 (A22)

By definition y, — 0 under IR, and by (6) and (14),

lim ps, = lim (1 — )7 T(1+ Ty, = )" =1 =771 = gor(ps,) =0 (A23)

Yy —0
Lt
limLg, = lim ———— - (A24)
pm0 ST 0Ty 1
and inserting these limits into (53) gives:
goozR<Ns,t> = lim = lim Ngt =MNgoIR — Ag(1 =)ot L (A25)

t—o00,IR Ns ' t—o00,IR

Next, we find the growth rates of labor productivity (output per capita) for the Malthus and
Solow sectors. For the Malthus sector, substituting (7) for p,, ,(y,) and (15) for L, ,(y,) into

(19) for Y, , and then rearranging, gives for some constant ¢, > 0 (see the Annex at the end):

(o— 1)a+[3 —a

Yare

P = 6 Nog (577 + 1)L (A26)
which, using the limits noted above
Yu t) (c—1a+p a
= 0 — | = 9+ N + 0— 0=0 A27
PS (LM,t PS( M,t) (0'_1>(1_ﬁ> 1_5 ( )

For the Solow sector, substituting (6) for pg,(y,) and (22) for E , into (20) for Y, and
rearranging yields, for some constant ¢, > 0 (again see the Annex):
Y a+f

Pt = B Nay (1 Ty T (A28)

which by (A25) and other limits

YSt 1_5 1—5 o /1 1-a—f
e ’ = = |— )\ 1— 0*1(E>L * 55
9ooIRr (Ls7t> 1—a _5nSooIR (1 — _ﬁ> S( ’Y) %) ( )
And since y, — 0 on an IR path, Lg, — L, and (by (1)) Y, — (1 _7)031Y57t’ hence

9IR (%) = goo[R( ) the economy’s

’ (13

growth rate” (i.e. of final output per capita), which



o1

by (54) is asymptotically positive. Similar algebra shows that since y, — oo on an PS path,

economic growth g pg (%) = G ps (YM ’t> =0by (A27). m

Ly
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ANNEX

Derivations in Appendix 6 on Derivation of Ay, = 0 Isoclines

Steps from (A6) to (A7)
Take logs then differences of (A6):

1+ alo = ]G = o1 = §) & (In(Nyy,) ~ (N ) ~ S =2 A (N
1 1 (o — 1)y; Ay,
_aaAln(Lt)—l—a(1—0_1<1_a_ﬁ>> (14_1“3/0771)
1+ alo — ]An(y) = o(1 = §) ANy, —nNy,) ~ 7= At

1 >] Ty,” Ay, /v,

—ao Aln(L,) + « [a —1-— ( ——
L=a=B/0 (141y,7)

Substituting Ay, /y, = Aln(y,) and rearranging:

1+ Fy?

14 a(oc—1)] ( ) Aln(y,)

1+ Fy?
ao(l—p)
l—a—p
1 )] Fyt%Aln(yt)

l—a—p (1+Fy?1>

o—1

l+alc—1)+ [1+alc—1)—alc—1) + 2] Ty,”

=o(1—p) Aln(Ny,,) — [0(1 —B) + ] Aln(Ng,)

—ao Aln(L,) + « [a —1-— (

= T 1-a-p Aln(y,)
14Ty~
_ —p
—o(1— ) Aln(Ny;,) — (1 — f) (m> Aln(Ng,) — a0 Aln(L,)
_ 1-8 -
1+alc—1)+ (Ul_la_ )Ty, Aln(y,)
1+ 1Ty, (A7)
o _(=pp B
=o0(1—=3) Aln(Ny,) —o o ﬁAln(NSJ) aoc Aln(L,)

Steps from (A7) to (4A8)
To progress from (A7), we need to replace Aln(N s,t>a using this:

AN, ,/N
n, = W = ny Aln(Ng,) = Aln(Ny,) = Aln(N,N,;)
Aln(N. n,Aln(N,
= Aln(Ny,) = TP = Aln(Vy,) = nAln(Ny,) = "0
. t

So (A7) becomes:
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o Aln(y,)

1+ Fy?%l
_ n,Aln(N,) (1—=5)* (Aln(N,)
1— 1-—
_ afl - f) (nt - ﬁ) Aln(N,) — acAln(L,)

Multiplying both sides by n, — 1:
L+alo— 1)+ (Z35)0y,”
=

o1 (n, —1)Aln(y,)
LTy (A8)

— o(1—B) (nt _ %) Aln(N,) — (n, — DacAln(L,)

Derivations in Appendix 7 on Existence of Pre-industrial Stagnation

For proof of Lemma part (ii)
To show n falls as y rises on the An, = 0 locus (A10), write (A10) as
B A+ BFyUT*1

n(y’N)_C—I—TFy%Ef(Fy%)
where A= (c—1)(1-—a—f)—1,B=(c—1)(1-p)— (%), C= (e —1)(1 -
20— f)—land D= (0 —1)(1—a—p) — (1;?5) We need to prove that
) = (C+Dy~")B—(A+By=)D _ BC—AD —0
(C + Dy*=")’ (C + Dy*")?
This is truebecausewehavea>aT>5:1_;_5+1, and hence
BC — DA
_ [(g_1>(1—5)— (%)] (0 —1)(1— 20— B) — 1]
- [e-va-a-p- (=) |e-va-a-s -1
——allo--9- (7 5)| +alle-na-a-5 -1
— —(o — _ —1_5 g — — — o0 — -
o[- e=1D0=p+ (=25) + e - D1 =H —al—1)~1
:a[ﬁ—a(a—l)]:a2(5—a)<0

For proof of Proposition 2(b)
Showing

(14 alo 1)+ (205 | (-1

—o—

(1479, ) (2= 52)

is the same as showing:




o4

Kligffﬁ e (ﬁ_li;fﬁ> <"—1><1—a—5>] ry,”

) 8 )
> <n—1_a_5> (0—1)1—a—8)— [l +alo—1)]{H—1).

We prove this inequality is true by showing the [LHS] > 0 and the RHS < 0 as follows:

(1[—LSS—]6): [<1—1;—56>2(ﬁ_1>_("_1> <ﬁ_1i;€5>]

Y D ey RS SN et R S 1-5
_((1—0z—ﬁ)2( ”) a0 (=)

which (because o — 1 <(—ﬁﬁ2andn > 1 . 6)
1—8 1—8 1 1-8
g [((1—a—ﬁ)2_(0_1)> l—a—ﬁ+<a_1_1—a—ﬁ> (1—a—ﬁ>}
B 1—8 1 1-8
a ((1—@—6)2_1—a—5>1—a—ﬁ>0'
1—
RHS = (ﬁ_l—afﬁ> l1—a—p)(c—1)—[1+alc—1)])(n—1)

=(l—a—B)c—n—n—alc—1)n—(1-8)(c—1)+1+alc—1)
= [(1—a—5)(a—1)—a(a—l)—1]ﬁ—(1—a—ﬁ>(a—1)+1

which (again because n > 1 —= 5)
< [(1—a—6)(a—1)—a(o——1)—1]1i;fﬁ—(1—a—ﬁ)(a—1)+1
_ [1—ﬁ—a1i;fﬁ—(1—a—ﬁ)] (0——1)—1i;fﬁ+1
1 —
_ _<1_afﬁ_1)[a(a—1)+1]<o.

Derivation in Appendix 8 on Existence of Modern Economic Growth Zone
lljuoé(o——l)Jr(1 2 ﬂ>ant }
g

L 1—v

(n; = D[(1 = B)AI(N,) — aAln(e, )]

14+ Nyvny v (A16)
1 —
_ [(1 — ) (nt - fﬁ> Aln(N,) — (n, — 1)aA1n(Lt)]
14 a(o —1) + (=) N,on, —
= (1—7) [ a(o 1 j_ N(jnaluf> n (n,—1)— (nt e i - f 5) Aln(N,)

1+a(o—1) + (55) Nyn,
+ (n, — 1)aAln(L,) = — (n, — 1o Aln(e,)
1+ N Znt v
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Lialo-1) | N,vn,
= 15 - 1:3/_ (n, — 1)ae Aln(e,)

14+ Nywng v
14+alc—1)+ N i, v 1—
_ [( ( ) <1a5> t _1>nt+—5

1—|—anlt a l—a—p
1+a(c—1)+ an v -1
_LHalo =D+ () Ve, Aln(Nt)+—(nt % Aln(L,)
1+N””t” (1—-5)
1+a(o—1)+ (2 5>N””t” —1—Nyn, v
== n
l—i—ant% !
1—|—Nnv an; —1l—alc—1 -1
+<1 =) ! i ) 1) Aln(Nt)+—(nt >aA1n(Lt)
1—|—N5ntT (1-58)

[(Oz(a —1)+ (lla%)N vn;;V — Ntflfntluu> (;;%) —1—alc—1)
n, +

T—— Aln(N,)
1+ NtﬁntT 14+ N,vn, v

+ uAIn(Lt)

(1—-5)
Now substitute li_f s—l=1o3= a(o — 1), which makes this expression:
| {ac—1)+ a(5— 1)N,7n, " b L E—D —alc—1) Aln(N)
- 1—v 1 - t
1—|—N”nt v ! 1+ Nyn, v
(n, —a
+———Aln(L
=g M
Lta(o—1) | Non, 7"
1-8 l—-a—
= ( = Ntth? ) (n, — 1)ae Aln(e,)
- 11 -1 « Aln o
=[{o—1+GE—-1)Nm, " }n, — (0 —5)] (V) (= 1) Aln(L,)

l—i—ant;U (1—5>
1 —1) | Njyn,
:»( tale—1)  Nem )(nt—l) Aln(e,)

1—-p l—a—p

=[{o—6+GE -1+ N0, ) n, — (0 —5)] An(V,) (A17)
1+ N,on, v
- (T) 1) (L)
Derivations in Appendix 10 on Asymptotic Growth Rates
Derivation of (A26)
1 1 1 1 . Ykﬂ 1 4&'_f% 5
(19) Yy, = BNM : MﬁtEMBLMt — LMi = 5NM WA O

which, substituting (7) for p,, , and (15) for L, ,,

B
1 - o1 pl [ LT -3
= BNM,t |:(1 - 7>ﬁr (yt 7+ F) :| EMB (0+>
Yy
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_a 1 —a

1 B =z o1 or1(128)+1%5 ,
:5[(1—7)0 T2 Ey, ST NM,t<yt 7 +F> o 16[’26
(e-Da+p — 1 led B — . B-a
— ¢ Ny (9,7 +T)" " ILIT where ¢ = E(l — ) BT S 0 (A26)
Derivation of (A28)
_1-B a  l1-a-8
Substituting B , = (%) ™" * L, pg ;77 (22) into Yy, = L N pl 5 TS 7L, (20)
1-p 127,8 1-a—
and rearranging:= Y , = lNk.;,tpsﬂtlfﬁt3 [(]\gss’t)l"‘ﬁLS’t pS’tlfolz—B Ly’
—a— 5 a _ _1-8 . . Bl—a—P)t+a _ B(1-B)ta(l-p) _ _a+f
(Powers: Ny 1=0=5 + 1202515 = Toaup Psit’ (1B as] = (Ao = Toad)

1/1\ia5 B
:B<§> Ng1=o-8 aﬁpStlaﬁLSt

and then using (6) for pg ,

Ygi 1 ( 1 )135 1B - b1y L TR
= —— === Ng T-a- [1—’7ﬁ 1+FyT"71]
LSt 6 g S,t ( ) ( t )
_atB
= ¢ NSt o 5(1—|—Fyt D where b
o (A28)






