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Abstract 

Abstract: Although many megacities in developing countries experience floods that affect a 
large number of people, relatively few empirical studies have evaluated the costs involved. 
This paper estimates such costs by conducting a hedonic price analysis of the impacts of 
floods on the housing market in Jakarta. A robust regression technique on a simple linear 
transformation model, and a maximum likelihood estimation technique on the spatial lag 
version of the simple linear transformation model are utilized to estimate the correlation 
between the level of the 2007 floods and monthly housing rental prices in Jakarta, 
Indonesia. This paper concludes that in developing countries’ megacities the total cost of 
floods is not as considerable as the total estimated cost of making the city of Jakarta flood-
free. 
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The cost of floods in developing countries’ megacities: A hedonic price 

analysis of the Jakarta housing market, Indonesia 

1. Introduction 

Climate change is causing an increase in extreme weather and climate events. Developing 

countries are particularly vulnerable due to their geographic exposure, poverty, high 

dependence on agriculture, rapid population growth and limited capacity to cope with an 

uncertain climate. This leads to increased human exposure to natural disasters such as 

heatwaves, droughts, storms and floods, which are becoming more frequent as the world 

gets warmer (Stern, 2007). Among these major weather events, floods have been 

recognised as the major cause of economic damage worldwide which, in turn, affects a 

large number of people (UNISDR, 2002). More specifically, this phenomenon has become 

an annual event over the past few decades in many developing countries’ megacities, and 

has heavily impacted Asia, where there is a large concentration of people in urban areas. 

(World Resources Institute, 2015).  

In 2014, the level of urbanization in developing countries was approximately 48.4%, and 

the proportion of people living in urban areas in the Asian region was approximately 47.5% 

(UN, 2014). Urbanization in developing countries has brought on urban management 

challenges related to the lack of physical infrastructure and inadequate urban services 

(Cohen, 2004). In some cities, urban expansion has been unplanned or inadequately 

managed, leading to rapid sprawl, pollution, and environmental degradation, accompanied 

by unsustainable production and consumption patterns (UN, 2014). 

An apparent lack of capability in managing urban development, as a result of high rates of 

urbanization and large populations, along with increasing climate variability and rising sea 
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levels are typically suspected as the main causes of these floods.  It is not uncommon that 

these floods annually cause serious natural disaster events in developing countries (UN and 

WB, 2010). A study undertaken by the World Resources Institute (2015) considered 

Indonesia to be one of the countries with the greatest number of people exposed to flood 

risk, ranking 6th out of 164 countries in 2010. Jakarta comprises the largest urban area in 

Indonesia with a population density of approximately 14 thousand persons per km2 (Yusuf 

and Resosudarmo, 2009).  

In Jakarta, the cause of flooding is due not only to increasing climate variability and rising 

sea levels, but also to the extensive use of ground water, which has caused subsidence in 

several areas (World Bank, 2011). Flooding is an annual disaster event in Jakarta and most 

of the time affects a significant number of residents in the city.  For example, the 2007 

floods were one of the more significant, inundating almost 36% of Jakarta city, in some 

areas to a depth of seven meters, resulting in over 70 deaths and 340,000 displaced people 

(Jha et al., 2012). In 2013 and 2014, Jakarta was again hit by major floods (Budiyono et al., 

2016). 

Due to growing concern over the impact of floods on Jakarta, local government and non-

government organisations have been developing several intervention programs, including 

better managing the risk of disaster, and the resettlement of urban poor populations at the 

lower end of the scale, up to reducing greenhouse gas emissions (Baker, 2011). Several of 

these activities are as follows. Since 2012, with World Bank support, the Jakarta 

government has developed projects to dredge a number of vital floodways and retention 

basins, and has rehabilitated embankments and mechanical equipment that are part of 

Jakarta's flood management system. This includes work on 11 floodways or canals, 

comprising a total length of 67.5 kilometers, and four retention basins covering an area of 
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65 hectares. About 42 kilometers of embankments were rehabilitated or constructed within 

these floodways and retention basins (World Bank, 2016). 

However, some constraints have proved to be an obstacle to the success of these initiatives, 

such as much-needed upgrades to city infrastructure, the significant lack of research and 

data regarding floods to support decision-making, and the absence of community 

engagement — both government and community — to take necessary action. The cost of 

the projects needed to mitigate floods in Jakarta is also not trivial.  The Jakarta Water 

Management Agency estimated the city needs Rp. 118 trillion (USD 9.2 billion) — 

approximately twice the total revenue of Jakarta government in 2015 — to make Jakarta 

flood-free (Tambun et al., 2015). Therefore, reducing the flood risk in Jakarta still remains 

a challenge to be tackled by the Indonesian government, as a key priority within disaster 

management. 

As has been mentioned already, although flooding is a significant occurrence for 

consideration by any government in developing countries, there has been little research and 

limited evidence of evaluating the cost to their megacities. Most research has focused on 

flood risk in developed countries, particularly the United States of America, and has studied 

the impact of flooding on the price differential of property values and their relation to 

insurance costs (Carbone et al., 2006; Bin and Landry, 2013; Bin and Polasky, 2004; Bin et 

al., 2008; Atreya et al., 2013). 

Until recently, only a few studies have analysed the economic damage and loss due to 

flooding. Budiyono et al. (2015) identified areas of highest risk and assessed Jakarta’s risk 

using the damage scanner model. They also found the annual expected damage due to river 

flooding in Jakarta is approximately US$ 321 million per year, and obtained new estimates 
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of economic exposure values for different land use classes (industry and warehouse, 

commercial and business, planned house, and density urban). In the same vein, the study 

undertaken by Wijayanti et al. (2017) measured flood damage in Jakarta but distinguished 

between residential and business sectors, with reported values of US$ 1.3 million and US$ 

9.2 million in 2013, respectively. Wahab and Tiong (2017) proposed a multi-variate 

residential flood loss estimation model to estimate direct tangible loss to buildings and 

contents for the residential sector after the 2013 January floods. The results show that as 

water flood level (expressed in water depth) increases, the building structure and contents 

losses (expressed in terms of US$) tend to rise, but the tangible loss for the residential 

sector in Jakarta city is greater in higher than in lower income areas. 

In an attempt to fill the recognised research gap, this paper will apply a hedonic property 

value analysis using data obtained from a combination of the Indonesian Family Life 

Survey (IFLS), and flood-level data in Jakarta obtained from the United Nations 

Department of Safety and Security (UNDSS). The main objective is to analyze whether 

major flood events are directly correlated with property values in Jakarta.  

The paper is divided into five sections; the background and motivation for the research; the 

use of the hedonic property value method in previous studies; a description of the 

methodology and data utilized in the paper; the empirical results obtained from the data; the 

policy implications; and the concluding statements. 

2. Literature Review 

The hedonic price method provides an intuitive analytical tool for studying the effects of 

property attributes and spatially integrated amenities on housing prices. Lancaster (1966) 

pioneered the development of its theoretical foundations, derived from the theory of 



 6 

consumer demand. The central assumption is that consumer utilities are not based on the 

goods per se, but instead on the individual “characteristics” of goods — their composite 

attributes. Although Lancaster (1966) was the first to discuss hedonic utility, there was 

nothing about pricing models and the properties of market equilibrium. To fill this gap, 

Rosen (1974) studied the demand–supply interaction in which they bid (consumers) and 

offer (suppliers) the combination of attributes and prices of the goods that keep the market 

in equilibrium. 

Additionally, Rosen’s (1974) studies form the basis for using the hedonic property price 

model to estimate the value of environmental amenities. The argument is that the attributes 

of residential properties — recognised as heterogeneous goods, such as structural, 

neighborhood and environmental characteristics — are reflected in the price differentials 

that affect lessee preferences in a market clearing equilibrium condition (Rosen, 1974). The 

advantage of using this method over other preference estimation techniques is that it makes 

use of actual market transactions to recover value estimates for non-market attributes (Bin 

et al, 2008). 

Since then it has been widely utilized in environmental economics literature to estimate the 

price difference between residential properties located within or outside floodplain regions. 

Some of them can be seen in Table 1. Most of these studies demonstrate a negative relation 

between the housing prices and flood events, whereby the properties located in the 

floodplain are likely to be impacted by a price decrease, in comparison to those properties 

located in non-floodplain areas. Further to this, following a flood phenomenon, owners of 

houses located in floodplain areas are forced to pay an increased insurance premium. 

Skantz and Strickland (1987) note that house-price reactions to flood events initially 
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declined and later regained their lost value due to the market forgetting about the flood 

event.  

Using a semi-logarithmic functional form for hedonic property value analysis, they found 

there was no immediate decline in flooded-home prices after the flood event. This was due 

to the flood insurance premium being subsided by the federal government. A year later, 

when the government cut the economic support, floodplain houses experienced a decrease 

in property values. 

Bin and Polasky (2004) also utilized the hedonic property price function to estimate the 

flood hazard effects on property values in Pitt County, North Carolina. The methodology 

used an OLS regression analysis which found that after Hurricane Floyd in 1999, houses 

located in a floodplain were impacted by a price discount. The marginal effect estimated for 

the property values located in the floodplain was approximately $ 7,463, i.e. the property 

value in the floodplain was lowered by that amount of money.  

This formed the basis for the study undertaken by Bin and Landry (2013), which re-

examined and compared findings with a previous flooding event regarding lessee 

preferences in a market clearing equilibrium condition — 1996 Hurricane Fran — using 

difference-in-difference (DID) and spatial effect models (spatial lag and spatial error). They 

found that average real property values decreased by approximately 5.7% after Hurricane 

Fran compared to approximately 8.8% after Hurricane Floyd; however, in between both 

hurricanes, they increased by approximately 2.2%. This price increase is due to the lessee 

becoming more insensitive to flooding events since the perception of flood risks and cost 

associated with it are not persistent over time. 
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Most of the published literature analyzing the relationships between floods and hedonic 

property value concerns the US (Table 1). There are some studies regarding other 

developed countries, such as the Netherlands (Daniel et al., 2007) and New Zealand 

(Samarasinghe and Sharp; 2008); and very few on developing countries.  Among the few is 

a study by Rabassa et al. (2016) which attempts to determine whether flood events are 

associated with property values in La Plata city, Argentina. Using data from land parcel 

sales in 2004, they found that property sale prices were affected by a discount of 

approximately 17.3% for properties located in flood-prone areas, as opposed to those 

situated outside of the floodplain. 

Another important characteristic regarding the most recent studies is their coverage of flood 

events not occurring on an annual basis.  Floods in the southern part of the US might 

happen frequently, but only once every few years, so that the prices immediately following 

the shock may not yet be equilibrium prices.   

This paper will apply the hedonic price method to see whether the annual flood events have 

an impact on the housing value, measured by monthly rental property price, in Jakarta, 

Indonesia. Since this is an annual event, though the size might vary annually, we can expect 

the housing rental market to be in its equilibrium condition. 

3. Study Area and Data Sources 

The city of Jakarta, the capital of Indonesia, is the study area of this paper. Jakarta has been 

one of the fastest-growing megacities in the world. Approximately 6.5 million people 

resided in this city in 1980 compared to more than 10 million people in 2016 (CEIC, 2017). 

The city lies on a low, flat alluvial plain formed by the mouth of the Ciliwung River (main 

river) where it meets Jakarta Bay. This river travels through the middle of the city and 
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divides it into western and eastern areas. The Pesanggrahan and Sunter are less turbulent 

rivers and cross the western part of Jakarta. Thus, most of the city is prone to swampy and 

flooded conditions, especially during the rainy season (typically from October to April). 

Those parts of the city further inland are slightly higher but are also at risk of experiencing 

flood events (Baker, 2011). 

Figure 1 shows a map of the study area and the flood water levels during the February 2007 

flood event per sub-district level.  As seen, locations with the highest flood level (dark red) 

are adjacent to the Ciliwung, Pesanggrahan and Sunter Rivers, especially in the southern 

area of Jakarta. However, the area of the city with more water coverage was northeast 

Jakarta, which includes the subdistricts of Kelapa Ganding, Pulo Gadung, Cakung, Danau 

Sunter, Kemoyoran, Tanjung Priok and Cilincing. 

The map (Figure 1) and the data for the flood water levels by ‘village’ or kelurahan in 

Jakarta were taken from the United Nations Department of Safety and Security (UNDSS), 

which surveyed Jakarta in February 2007. The city is divided into five districts (known as 

kotamadya), which divide into 42 subdistricts (known as kecamatan). Each subdistrict is 

comprised of approximately 2 to 5 kelurahan. The UNDSS collected and reported the water 

levels of the 2007 Jakarta flood from news sources (radio and television), and United 

Nations Staff Reports to UNDSS Offices and Police Stations2. 

The flood water level to be studied in this paper (which is in Figure 1) corresponds to the 

water level (measured in centimeters) registered immediately following the flood event on 

6 February 2007. This information was gathered at the ‘village’ level. For our analysis in 

this paper, we calculate the weighted average flood water level in each subdistrict. The 

                                                 
2 https://trip.dss.un.org/dssweb/WelcometoUNDSS/tabid/105/ 
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‘village’ area (measured in square meters) within each subdistrict is used as a weight to 

estimate the average water level for each subdistrict. The reasons for aggregating the flood 

information at subdistrict level are as follows.  First, floods in one kelurahan will certainly 

affect their neighbouring kelurahan; second, floods are typically managed at subdistrict 

level; and third, for security reasons, household information only contains coded locations 

at the subdistrict level. 

The other data used for this paper is cross-sectional, extracted from the 2007 Indonesia 

Family Life Survey (IFLS) dataset. The dataset contains information on monthly house 

rent, housing characteristics and neighborhood characteristics3. There are as many as 1,573 

observations for the city of Jakarta. This sample arguably represents the population of 

Jakarta. 

The variables selected for the hedonic price analysis are those commonly used in hedonic 

property value studies (Yusuf and Koundouri, 2005; Yusuf and Resosudarmo. 2009) and 

are available in the IFLS dataset. Monthly house rental price expressed in rupiahs 

(Indonesian currency) is used as a proxy of housing value. Meanwhile, housing 

characteristic variables are house size (expressed in square meters); number of rooms; wall, 

roof and floor materials; water source availability; and yard at the house. The wall, roof and 

floor materials are dummy variables which have been assigned a value of one if they are 

constructed from a reasonably durable material; i.e. cement/brick for walls, concrete/roof 

tiles for roof and cement/stone for floor, or otherwise they are given a value of zero. Water 

source is also a dummy variable of 1 if there is a water source inside the house, or 

otherwise zero. The existence of a yard is valued as 1, otherwise as zero. These variables 

are expected to bear a positive relationship to the monthly house rent. 

                                                 
3 https://www.rand.org/labor/FLS/IFLS.html 
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We also include neighborhood characteristics at the kelurahan level in Jakarta, namely 

unemployment rate, percentage of people with a university education, whether or not public 

transport is accessible and whether a house is located along a river basin, distance from the 

district centre, and the traffic congestion level. The information extracted is at the ‘village’ 

(kelurahan) level. 

The variables for the unemployment rate, the distance to the centre of Jakarta, and the 

settlements along riverbanks are expected to be negatively associated with the dependent 

variables; the variables for the percentage of people in the ‘village’ with a university 

education, and the accessibility of public transport, are estimated to be positively related to 

monthly housing rent. 

The environmental variable includes the 2007 flood experience in Jakarta, recorded as the 

water level measured in centimeters, and it is expected to be positively associated with 

house rent. 

Table 2 provides a detailed description and summary of the variables that are utilized in the 

hedonic price model. 

4. Methodology  

Considering the hedonic hypothesis as a basis that the goods are valued by the utility of 

their attributes or characteristics, Rosen (1974) developed a heterogeneous product model 

whereby the implicit prices or values of the attributes are estimated, and the sum of which 

equal the observed transaction price. This implies that they cannot be traded separately, but 

jointly commercialized in a unique market as a single good.  
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The hedonic price emerges from the interaction of buyers and sellers and represents a 

market clearing equilibrium, based on the following assumptions: (1) continuity in the 

levels of attributes — the amount and qualities of the attributes associated with the 

heterogeneous products are reflected in price differentials; and (2) full information about 

prices and attributes (Rosen, 1974). 

Since the pioneering work by Rosen (1974), many studies have applied the hedonic price 

model to assess the attributes of land and residential properties, but also to estimate the 

value of environmental amenities — non-market characteristics that also affect house 

prices. These related to aesthetic sights and their closeness to recreational sites such as 

parks, and beaches, as well as the quality of the environment in terms of air, water and 

noise pollution. 

According to this method, the hedonic price function is typically represented as: 

𝑃𝑃𝑖𝑖 = 𝑓𝑓(𝑠𝑠,𝑛𝑛, 𝑙𝑙, 𝑒𝑒) 

where 𝑃𝑃𝑖𝑖 is the price of property 𝑖𝑖 which is a function of structural characteristics (e.g. 

house size, number of rooms, quality of walls), 𝑠𝑠; neighborhood characteristics (for 

example, ethnic composition, crime rate, flow of traffic), 𝑛𝑛; location characteristics (e.g. 

proximity to economic centres, distance to highways, accessibility to public transport), 𝑙𝑙; 

and environmental characteristics (such as air pollution and flooding), 𝑒𝑒. Therefore, 

characteristics that generate benefits for households, such as a larger number of rooms or 

home size, increase the property’s price; while characteristics that imply costs for 

households, such as a neighborhood with a high crime rate, reduce the property’s price. 

This method also makes inferences about non-observable values of different attributes in 

the housing market such as air pollution and flooding. 
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Given the basis of the method is to find what portion of the price is determined by the 

hedonic variable, we obtain the environmental attribute (which is flooding) by calculating 

the partial derivative of the price with respect to the variable 𝑒𝑒, ∂𝑃𝑃𝑖𝑖/∂𝑒𝑒. It gives us the 

marginal implicit value for an additional unit of the environmental asset, and thus enables 

an estimate of its monetary value.  

The theoretical model specified in equation (1) will be utilized to calculate the implicit 

price (or discount) of the flood event on rent price as the environmental variable considered 

in this study. The model is an ordinary least square (OLS), which is commonly utilized in a 

hedonic property value analysis. In addition, a robust regression technique is applied to the 

equation to produce a robust estimate of variance and to ensure that coefficients estimated 

are more efficient (Hubert, 1973): 

𝑦𝑦 =  𝛽𝛽0 + 𝒙𝒙𝟏𝟏 𝜷𝜷𝟏𝟏 + 𝒙𝒙𝟐𝟐 𝜷𝜷𝟐𝟐  + 𝑓𝑓𝛽𝛽3 +  𝜀𝜀 (1) 

where 𝑦𝑦 is the logarithmic form of the monthly rent of the house which is the proxy for 

housing value, 𝒙𝒙𝟏𝟏 is a vector of housing attribute variables and 𝒙𝒙𝟐𝟐 is a vector of 

neighborhood characteristics. The variable 𝑓𝑓 is the logarithm form of the flood water level. 

Meanwhile 𝜀𝜀 is the error term. 

In this hedonic analysis, it is assumed that the lessee makes a rental decision accepting all 

the housing characteristics, and so the property value is a function of the heterogeneous 

characteristics of the property. It is suspected that this hedonic property value function is a 

nonlinear function of its characteristics and many of the variables involved are not normally 

distributed; and so, a transformation function technique is usually adopted.  The Box–Cox 
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transformation model is most commonly used in hedonic price analysis (Cropper et al., 

1988; Yusuf and Resosudarmo, 2009).  

However, in this paper, we adopt a simpler transformation technique; we transform and 

normalize the dependent variable (monthly housing rent), the continuous explanatory 

variables (house size, distance to the business centre and congestion level), and the study 

variable (flood level) using the logarithmic functional form. 

Previous studies show the dependent variable log-transformed due to the significant 

variation in the housing price variable (Skantz and Strickland 1997; Bin and Polansky 

2004; Daniel et al. 2007; Bin et al. 2008b; Samarasinghe and Sharp 2010; Pope 2008; 

Kousky 2010; Bin and Laundry 2013). Taking the logarithm of the explained variable 

minimizes the possibility of heteroscedasticity (Gujarati 1995; Wooldridge 2003) or 

corrects for it between house price (or house rent) and the residuals (Basu and Thibodeau, 

1998).  

In addition, a better R2 value is obtained when we consider the average room size in the 

OLS model, instead of the number of rooms. Therefore, the average size of a room is 

measured using a variable proxy (size/room). 

Implicit in this model is the assumption that the differential effect of the housing 

characteristics (house size, rooms, wall, roof and floor materials, water access, and yard 

house) are constant across the flood water level, and the differential effect of the flood 

event is also constant across the property’s attributes. That is to say, if the mean housing 

rental price is higher for a large than for a little house, this is so whether the house is 

located in a flood-plain area or not. Likewise, if for example a house in a flood-plain area 

has a lower mean rental price, this is so whether it is an apartment or a condominium. 
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As mentioned before, in this paper, an average flood water level is used for subdistrict 

areas. One reason for analyzing subdistrict areas is to take into account the impact of 

nearby flooding on the value of property in a certain area. A subdistrict in the Jakarta 

context is relatively large enough; however, there is still a possibility that average flood 

water levels in neighboring subdistricts affect the property value in a subdistrict (Yusuf and 

Resosudarmo, 2009).  

Anselin (1988) introduced a concept of spatial dependence to determine the relationship 

among the property values in neighboring locations. Several studies have incorporated this 

analysis to estimate the real impact of all the housing attributes — such as Daniel et al. 

(2007), Bin et al. (2008), Cho et al. (2009), Samarasinghe and Sharp (2010), Bin and 

Landry (2013) and Rabassa et al. (2016) — which suggests the presence of this spatial 

effect in a cross-sectional hedonic price analysis. Ignoring this estimation, the resulting 

coefficients from the OLS model could be inefficient or inconsistent (Anselin, 1988). 

To capture the neighboring spillover effect, this research paper uses the spatial lag model4 

proposed by Anselin (1988) and adopted by various studies (Leggett and Bockstael, 2000; 

Brasington and Hite, 2005; Daniel et al., 2007; Bin et al., 2008; Cho et al., 2009; Yusuf and 

Resosudarmo, 2009; Samarasinghe and Sharp, 2010; Bin and Landry, 2013; Rabassa et al., 

2016).  

This assumes that the housing rental price depends both on its characteristics (structural and 

neighborhood) and on neighboring house rental prices; i.e. the spatial lag model includes 

                                                 
4 Similarly, a spatial error model can be considered, which supposes that spatial 

dependence arises due to measurement errors or some omitted variables that are correlated 
and vary spatially. The Lagrange Multiplier (statistic=26.489; p-value=0.000) and the 
Robust Lagrange Multiplier (statistic=17.467; p-value=0.000) tests show spatial error 
dependence. 
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the spatially-weighted sum of neighboring house rental prices as the independent variable 

in the functional form of the housing price formation: 

𝑦𝑦 =  𝛽𝛽0 + 𝜌𝜌 𝑾𝑾𝑾𝑾 + 𝒙𝒙𝟏𝟏 𝜷𝜷𝟏𝟏 + 𝒙𝒙𝟐𝟐 𝜷𝜷𝟐𝟐  + 𝑓𝑓 𝛽𝛽3 +  𝜀𝜀 (2) 

where ρ is the spatial dependence parameter and 𝑾𝑾 is an 𝑛𝑛𝑛𝑛𝑛𝑛 standardized spatial weight 

matrix (where n is the number of observations). The spatial matrix, 𝑾𝑾, tells us whether any 

pair of observations are neighbors.  If, for example, house i and j are neighbors, then w𝑖𝑖,𝑗𝑗 =

1 and zero otherwise, for all i ≠ j.  Please note that w𝑖𝑖,𝑖𝑖 = 0 for all i.   

Whether any pair of houses is neighboring in this paper is determined by them sharing 

some common borders (contiguity). The spatial weight matrix is usually standardized, such 

that every row of the matrix is summed to 1. This enables us to interpret the spatial lag term 

in a spatial model as a simply spatially-weighted average of neighboring house prices. The 

spatial lag model will be estimated using a maximum likelihood (ML) regression technique 

(Anselin, 1988). 

Results and Discussion 

Table 3 shows the results of estimating the basic and spatial lag models; i.e. equations (1) 

and (2), respectively. From the result for the spatial lag model, it can be seen that the 𝜌𝜌 

estimate is significant at 5%; and by comparing results for the basic and spatial lag models, 

it can also be seen that while most coefficients are almost similar, the coefficients for roof 

material, water source, house yard, public transport access, distance to business centre, 

traffic flow and flood water level are relatively different.  These results indicate that spatial 

dependence plays an important role in the process of formulating housing rental prices in 

the Jakarta housing market; i.e. estimated coefficients of the basic model are likely to be 
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inefficient or inconsistent. The results from the spatial lag model are argued to be superior 

to those of the basic model. 

As can be seen in table 3, the value of the adjusted R2 in the OLS model is 0.423, whereas 

for the Spatial Lag model the value of the variance ratio is 0.431 and the squared 

correlation value is 0.432. This indicates a better fit of the model to the observed data. The 

Moran’s I statistic shows a negative spatial autocorrelation in house rental prices in 2007, 

denoting that observations with similar rental prices are dissimilar when compared.  

In order to evaluate the functional form of equation (1), we use the regression specification 

error test (RESET test). A linear regression model is correctly specified when there are no 

omitted variables, i.e. the null hypothesis equals zero. In this study, the OLS regression 

produces an F-statistic of 10.93 with a p-value of 0.0000, which indicates a specification 

problem. This indicates that additional explanatory variables are required to be included in 

the OLS model, since housing rent prices could also be affected by characteristics; 

however, we put as many available control variables as possible in the model, and 

conducted a spatial analysis. 

Let us observe the results for the spatial lag model. Five out of seven house structural 

characteristics, i.e. house size, size of rooms, wall and floor materials and house yard, are 

positively associated with the house rental price. This is as expected. Estimated coefficients 

for these variables are strongly significant at the 1% level, except for the house yard, which 

is not significant at a conventional level. The other two estimated coefficients, i.e. roof 

material and water source, are negatively related to the dependent variable but not 

statistically significant; however, the negative signs are unexpected.  
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An explanation for this could be the greater presence of houses with non-cement/brick 

walls and without a water source in the sample, whereby a better quality of wall material 

and access to water in the house may not necessarily be a good thing for lessees. 

Interestingly, according to the study undertaken by the World Bank (2015), 28.9 million 

units, or 45% of existing homes in Indonesia, are considered substandard according to one 

of the following factors: poor quality housing material (such as roof, wall and floor); do not 

have access to basic utilities (water and sanitation); or, are overcrowded (less than 7.2 m2 

per capita). Houses with substandard roofing material (defined as asbestos and fiber/palm) 

amount to 9% or 5.9 million units, while those with no access to a water supply represent 

14% or 8.8 million units.  

All estimated coefficients for neighborhood qualities have the expected sign. Three out of 

six comply with expectations and are statistically significant correlated with housing rent 

price; i.e. with the coefficient for the percentage of people with a university degree, the 

distance to the centre and the house located along a river basin, all significant at the 1% 

level. The coefficient for the percentage of people with a university degree is positively 

related to housing rental price. The distance to the centre of Jakarta is negatively associated 

with housing rental price; meaning the closer the house is to the business centre, the higher 

the rental price charged to the tenant. Finally, the closer the house is to the river basin, the 

lower the housing rental price. 

On the main variable of analysis in this paper, namely flooding, it can be seen that the 

coefficient of the flood variable is negative and statistically significant at 5%. This 

coefficient suggests that a higher flood water level is associated with a lower housing value.   
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Further analysis is needed to understand the full association between flood water level and 

housing rental prices. The first derivation of the spatial lag model for the hedonic housing 

value is as follows: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =   𝛽𝛽3 (3) 

Let us insert in equation (3) the average value of 𝒙𝒙𝟏𝟏, then we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  −0.1279. This 

indicates that, on average, an increase in flood water level of 1% is associated with a 

0.128% lower housing value.   

Inserting the average flood water level in Jakarta in 2007, which was approximately 

42.33cm, it can be roughly concluded that flooding in Jakarta lowers the monthly housing 

value by Rp. 619 thousand or approximately 12.8% of the average housing rental price in 

Jakarta. Comparing this to previous studies for other countries recorded in Table 1, it can 

be seen that 12.8% is within the range of results from previous literature. 

If this Rp. 619 thousand can be interpreted as the average monthly willingness of a 

household to ‘permanently’ get rid of the cost of flooding, i.e. the capitalized marginal 

willingness to pay (MWTP), and assuming that there are approximately 10 million people 

or 1.8 million households in Jakarta having houses with an average lifetime of 25 years and 

a discount rate of 5% annually, it can be estimated that the total willingness of all 

households in Jakarta to permanently get rid of the cost of flooding is approximately Rp 

40.5 trillion or approximately 7.2% of Jakarta’s GDP in 2007.  

The formula to calculate the capitalized MWTP is as follows: 
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𝑊𝑊 =  �(1 + 𝑟𝑟)𝑡𝑡
25

𝑡𝑡=0

(1.𝑤𝑤)                                                                                                        (4) 

where 𝑊𝑊 is the capitalized marginal willingness to pay; i.e. how much a household is 

willing to pay for a ‘permanent’ (typically 25 year) reduction of a unit of pollutant, and 𝑤𝑤 is 

the marginal willingness to pay per month, i.e. marginal effect of hedonic equation, while 𝑟𝑟 

is a discount rate of 5% and 𝑡𝑡 is year. 

It can be interpreted that the reconstruction and rehabilitation process in developing 

countries’ megacities after a flood is more likely to take considerably longer than in 

developed countries, due to the gap between the flood cost and the flood-risk management 

values. This can be seen in the case of Jakarta where the regional government needs Rp 118 

trillion to make the city flood-free, while the total flood cost is Rp 40.5 trillion. The 

difference reveals the difficulty for Jakarta local authorities to recover from flooding, 

making the post-disaster reconstruction slower. By comparison, in developed countries it is 

generally much faster to restore and rebuild after floods because of a better flood 

prevention system, developed infrastructure, and emergency-response plans (Laframboise 

and Loko, 2012; UN, 2016). 

It is important to note that house characteristics variables are mainly represented by 

dummies (wall, roof and floor materials, water availability, and house yard), so that it is 

most likely that the OLS model has a certain degree of multicollinearity. This might explain 

the low significance levels and opposite signs obtained from a linear regression. Variance 

inflation factors (VIFs) are used to test for multicollinearity among the independent 

variables. VIF is an index that shows the existence of multiple correlation coefficients 
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between a single variable and the rest of the independent variables, and indicates the 

magnitude of the inflation in the standard errors.  

According to Gujarati (1995), multicollinearity may be a problem if the VIF is greater than 

10. In this study, only two variables (LOG(Traffic) and LOG(Distance)) were found to 

have a VIF value above 2.0. Overall, the mean of the VIF values for all of the variables was 

1.50 for the OLS regression. This means that there is no multicollinearity or no correlation 

between 𝜀𝜀𝑖𝑖 and the independent variables. 

Floods and Human Health Conditions 

In an attempt to understand why people’s attitudes differ regarding houses in flood prone 

areas and those that are not; i.e. in general, people place less value on houses in flood prone 

areas, this paper explores the relationship between human health conditions and housing 

characteristics, including flood water levels.  Human health indicators utilized in this paper 

are number of restricted activity days (or number of days with daily activities disrupted due 

to feeling sick in the past 4 weeks) and the case of depression (whether or not there is a 

member in the household who has suffered from depression in the past week; one if yes 

there is, and otherwise zero), both of which are available in the 2007 IFLS dataset.  

Number of Restricted Activity Days 

We adopt the basic and spatial lag models as shown in equations (1) and (2), respectively, 

where 𝑦𝑦 is the logarithmic form of the number of restricted activity days. Table 4 presents 

the results of estimating the relationship between number of disrupted daily activities due to 

poor health and flood water level, implementing the basic and spatial lag models.  
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Comparing results using the basic model and the spatial model in Table 4, it can be seen 

that implementing a spatial lag model is not needed, since the estimated 𝜌𝜌 is not significant 

at the convenience level, i.e. there is no evidence of spatial dependence in the data, and the 

tests based on the principle of Lagrange Multiplier Lag and Robust Lagrange Multiplier 

Lag are not statistically significant at any level of significance. In other words, apart from 

the level of flooding in the area, floods in neighboring areas are not associated with this 

type of human health condition. 

Flood coefficients in number of restricted activity days are significant at 10% and have the 

expected sign. A higher level of flood water level is associated with a higher number of 

restricted activity days. Using a similar strategy to that in equation (3), we estimate the 

overall association between poor health conditions and flood water levels. In the case of 

restricted activity days, the result is 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  0.0713; i.e. an increase in flood water level of 

1% is associated with a 0.07% higher number of restricted activity days in a household. 

People suffering depression 

The dependant variable is a binary response nominal variable: this is the probability of a 

household member (PD) having suffered depression in the last week). It is a binary 

response nominal variable since it only takes the values 0 and 1. PD = 1 if a household 

member has felt depressed in the last week, and PD = 0, otherwise. The probit model is 

represented as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃) =  𝜷𝜷𝟎𝟎 +  𝒙𝒙𝟏𝟏𝜷𝜷𝟏𝟏 + 𝒙𝒙𝟐𝟐𝜷𝜷𝟐𝟐  + 𝑓𝑓 𝛽𝛽3 +  𝜀𝜀     (5) 

where PD is the probability of the member of the family having suffered depression in the 

last week, and the explanatory variables are elements from equation (1). The output of this 
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non-linear model must be converted into marginal effects, so that it is possible to measure 

the impact of the independent variables on the dependent variable.  

Table 5 presents the average marginal effects (AME, marginal effect at the mean of each 

independent variable). The flood coefficient is significant at 5% and has the expected sign. 

A higher level of flood water level is associated with a higher incidence of feeling 

depressed in a household.  However, if observations of the dependent variable are similar to 

those in nearby locations, spatial dependence exists within the data, and ignoring it (as in 

OLS model) will result in inconsistent and inefficient estimated coefficients (Anselin, 

1998). In this paper, the presence of this spatial effect in the binary probit model is tested. 

Spatial probit models have been estimated using the ML method (McMillen, 1992; 

Murdoch, Sandler, and Vijverberg, 2003), and generalized method of moments estimators 

(GMM) (Pinkse and Slade, 1998). However, the traditional ML is less practical because the 

likelihood function involves 𝑛𝑛 integrals and the determinant of the 𝑛𝑛 𝑥𝑥 𝑛𝑛 matrix (where n is 

the sample size), which implies a computational burden (Pinkse and Slade, 1998). 

Pinkse and Slade (1998) proposed a two-step GMM estimation for the spatial-error probit 

model. The advantage of using this method lies in the fact that it does not rely on the 

assumption of normally distributed errors, and it does not require the calculation of the 

determinants and inverses of 𝑛𝑛 𝑥𝑥 𝑛𝑛 matrices because it is based on the two-stage least 

squares technique (Klier and McMillen, 2008). Hence, we conduct spatial analysis by 

estimating a spatial-error probit model, and this is discussed in more detail in Appendix A. 

The result suggesting the presence of a spatial-error effect in the probit model is also shown 

in Table 5. The 𝜆𝜆 estimate is statistically significant at 1%, which means there are spatial 

dependence effects in the observations. In other words, the probability of having a 
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household member feel depressed rises in flood-prone areas but people living in 

neighboring areas also suffer the same symptoms. Column 2 contains estimates that are 

corrected for spatial error probit correlation using the nearest-neighbor weights. 

Numbers in brackets are Robust Standard Errors; AME is Average Marginal Effect 

(evaluated at the mean of each independent variable). 

Using equation (3), we estimate the overall association between human health conditions 

and flood water levels. The result is 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  0.087 in the case of feeling depressed; i.e. a 

10cm increase in flood water level is associated with 8.7% increase in the probability of 

having a depression incident in the household. 

From this result, it can be argued that houses in flooding areas have been associated with a 

worsening in human health conditions. This could be a reason why people put a lower value 

on a house in a flood prone area than one in an area that does not flood, given similar 

characteristics of the house and the neighborhood.  

Furthermore, in general, by using these results it can be estimated that flooding in Jakarta is 

associated with approximately 1 restricted activity day and approximately a 14% 

probability of diagnosable depression in a household annually; or, in total, flooding in 

Jakarta is associated with approximately 2.4 million cases of restricted activity days and 

approximately 257 thousand cases of depression symptoms annually. 

Conclusion  

This study is an attempt to estimate the cost of flooding in developing countries’ megacities 

by conducting a hedonic price analysis of the Jakarta housing market.  It estimates the 

correlation between levels of flooding and monthly housing rental prices in Jakarta in 2007.  
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Data on the flood water levels by ‘village’ or kelurahan in Jakarta were obtained from the 

United Nations Department of Safety and Security (UNDSS), which collected and reported 

the water levels of the 2007 Jakarta flood from news sources (radio and television), and 

United Nations Staff Reports to the UNDSS Office and Police Stations. Data on monthly 

housing rental prices and other information related to house and neighborhood 

characteristics are taken from the IFLS for 2007.  

The empirical results indicate that a one percent high flood water level is associated with a 

0.128% lower monthly housing rental price; or, on average, flooding in Jakarta is 

associated with lowering monthly housing values by approximately Rp. 619 thousand.  

Furthermore, if this number can be interpreted as an average monthly willingness of a 

household to ‘permanently’ get rid of the cost of flooding, and assuming that there are 

approximately 1.8 million residential houses in Jakarta with an average lifetime of 25 years 

and an annual discount rate of 5%, the cost of flooding for households in Jakarta is 

approximately Rp 40.5 trillion or approximately 7.2% of Jakarta’s GDP in 2007.   

This paper also found that a lowering in human health conditions could be the reason that 

households put less value on houses located in flood prone areas compared to those on 

higher land.  This paper estimates that a one percent higher flood water level is associated 

with a 0.07% higher number of restricted activity days in a household, and a 10 cm increase 

in flood water levels is associated with an 8.7% increase in the probability of suffering a 

depression symptom in the household. In general, using this result, it can be estimated that 

flooding in Jakarta is associated with approximately 1 restricted activity day and 

approximately a 14% probability of having a depression symptom in a household annually; 

or, in total, flooding in Jakarta is associated with approximately 2.4 million cases of 

restricted activity days and approximately 257 thousand cases of depression annually. 
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The Jakarta Water Management Agency has estimated the city needs Rp 118 trillion to 

make Jakarta flood-free (Tambun et al., 2015). This number is higher than the paper’s 

estimate of the cost of flooding for households in Jakarta; i.e. approximately Rp 40.5 

trillion. It can be seen, therefore, that it will be challenging for the Jakarta government to 

extract resources from its society to fund projects to eliminate flooding in the city. External 

resources from the central government are most likely needed to resolve the problem of 

flooding in Jakarta. 

Appendix A. Spatial analysis of the case of a discrete variable 

The spatial analysis of the probit model is viewed as an approximation because the 

structure of the spatial dependence is rarely known; however, what is known is that the 

errors tend to be correlated over space. We start with the structural model for the latent 

variable of the spatial-error probit that takes the following form: 

𝑦𝑦• = 𝑋𝑋𝑋𝑋 + 𝑢𝑢          (6) 

𝑢𝑢 = 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝜀𝜀          (7) 

where 𝑦𝑦• is regarded as an unobserved scalar (latent variable), 𝑊𝑊 is an 𝑛𝑛 𝑥𝑥 𝑛𝑛 spatial 

weights matrix, 𝜆𝜆 is the spatial autoregressive parameter, 𝑦𝑦 is the observed value of the 

limited-dependent variable, and 𝑋𝑋 is a matrix of explanatory variables. 

Latent-variable 𝑦𝑦• –a continuous variable 𝑦𝑦• ∈ (−∞,∞) – links to the observed binary –

outcome 𝑦𝑦 through the measurement equation (observed model):  

𝑦𝑦 = �
1 𝑖𝑖𝑖𝑖  𝑦𝑦• > 0

0
0  𝑖𝑖𝑖𝑖 𝑦𝑦• ≤ 0

         (8) 
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with 𝜀𝜀 ~ 𝑁𝑁 (0,𝜎𝜎𝜀𝜀2𝐼𝐼𝑛𝑛), equations (6) and (7) can be written in a reduced form as: 

𝑦𝑦• = 𝑋𝑋𝑋𝑋 + (𝐼𝐼𝑛𝑛 − 𝜌𝜌𝑊𝑊)−1𝜀𝜀        (9) 

where 𝑢𝑢 (a vector of errors) has mean zero and the variance-covariance matrix is 

proportional to (𝐼𝐼 − 𝜆𝜆𝑊𝑊)−1(𝐼𝐼 − 𝜆𝜆𝑊𝑊′)−1, i.e. 𝑢𝑢 = 𝑀𝑀𝑀𝑀𝑀𝑀 (0,Ω), in which the diagonal 

elements of 𝐸𝐸(𝑢𝑢𝑢𝑢′) = Ω contains 𝜎𝜎𝑖𝑖2 vary across observations. This implies both 

heteroscedasticity and autocorrelation for 𝑢𝑢, unless 𝜆𝜆=0, and makes estimates inconsistent. 

The matrix notation 𝐸𝐸(𝑢𝑢𝑢𝑢′) = Ω, with a diagonal matrix as follows: 

𝑢𝑢 = �
𝜎𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝜎𝑛𝑛

� 

Equation (8) can also be written as: 

𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 = 1) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖• > 0|𝑋𝑋𝑖𝑖,𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖•) 

                    = 𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑢𝑢𝑖𝑖 > 0|𝑋𝑋𝑖𝑖,𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖•) 

  = 𝑃𝑃𝑃𝑃(−𝑢𝑢𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝛽𝛽|𝑋𝑋𝑖𝑖,𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖•) 

  ≅ 𝜙𝜙(𝑋𝑋𝑖𝑖𝛽𝛽)        (10) 

Equation (10) is the probability for the single 𝑖𝑖-th observation when 𝑦𝑦𝑖𝑖 = 1, 𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 = 1), so 

that we have a probit model, where 𝜙𝜙 represents the cumulative normal distribution 

function, so that 𝜙𝜙(.) ∈ [0,1]. Since equation (6) induces a non-spherical disturbance, in 

which 𝑢𝑢 is distributed 𝑛𝑛 dimensional multivariate normal (MNV), intuitively, 𝜀𝜀 is also MNV 

with mean 0 and non-spherical variance-covariance 𝜎𝜎𝜀𝜀2𝐼𝐼. 
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Due to the presence of heteroscedasticity (𝜎𝜎𝑖𝑖2is not constant), the spatial error probit model 

for the single 𝑖𝑖-th observation is as follows: 

𝑃𝑃𝑃𝑃�𝑦𝑦𝑖𝑖 = 1|𝑋𝑋𝑖𝑖,𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖•� = 𝜙𝜙 � 
𝑋𝑋𝑖𝑖 𝛽𝛽
𝛺𝛺𝑖𝑖𝑖𝑖

 �                                                                                      (11) 

The marginal distribution of the MNV, denoted by 𝜙𝜙𝑖𝑖(.), requires to evaluate 

simultaneously the joint probabilities at each location. The unknown parameters 𝛽𝛽 and 𝜆𝜆 

can be obtained by maximizing the log likelihood function as follows: 

𝑙𝑙(𝛽𝛽, 𝜆𝜆) = ln[𝐿𝐿(𝛽𝛽, 𝜆𝜆)] = ∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 {ln𝐹𝐹(𝑋𝑋𝑖𝑖𝛽𝛽) + (1 − 𝑦𝑦𝑖𝑖) ln[1 − 𝐹𝐹(𝑋𝑋𝑖𝑖𝛽𝛽)]}                  (12) 

But now that we have the normal distribution in equation (11), the log-likelihood of 𝑦𝑦𝑖𝑖 

given 𝛽𝛽 and 𝜆𝜆, can be written as: 

𝑙𝑙�𝛽𝛽, 𝜆𝜆�𝑋𝑋𝑖𝑖,𝑤𝑤𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖•� = �𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑙𝑙𝑙𝑙𝑙𝑙 � 
X𝑖𝑖′ 𝛽𝛽
𝛺𝛺𝑖𝑖𝑖𝑖

 � + �(1 + 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑙𝑙𝑙𝑙𝑙𝑙 �1 −  
X𝑖𝑖′ 𝛽𝛽
𝛺𝛺𝑖𝑖𝑖𝑖

 �                     (13) 

However, given the heteroscedasticity and the non-independence of the 𝑢𝑢𝑖𝑖, under a 

multivariate distribution, the joint distribution is not the product of the 𝑛𝑛 marginal 

distributions, so that a binary probit observation does not maximize the sum of logs of 𝑛𝑛 

additively separable one-dimensional probabilities; instead, it maximizes the log of one 

non-separable 𝑛𝑛 dimensional distribution (Franzese et al., 2010). 

Due to the problem of endogeneity and non-sphericity of the variance-covariance matrix, 

Pinkse and Slade (1998) suggested the GMM estimation because it does not rely on the 

normally distributed errors and reduces the computational burden of the MLE estimation. 

As stated by Arbia (2014), they introduced the generalized errors in the context of the 
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probit model because the vector (𝛽𝛽, 𝜆𝜆) is not known. Then, the 𝑖𝑖-th generalized error is 

given by: 

𝑢𝑢�𝑖𝑖 = E[𝑢𝑢𝑖𝑖|𝑦𝑦𝑖𝑖,𝛽𝛽, 𝜆𝜆] =  
𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽

𝜎𝜎𝑖𝑖
 �

𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 � �1 −  𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

��
�𝑦𝑦𝑖𝑖 − 𝜙𝜙 � 

X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 ��                               (14) 

Pinkse and Slade (1998) consider a set of 𝑘𝑘 instruments that might include the explanatory 

variables, which are arranged in a 𝑛𝑛-by-𝑘𝑘 matrix 𝑍𝑍. Since 𝑍𝑍 contains instruments that are 

exogenous, they suggest the moments condition as follows (Arbia, 2014): 

𝐸𝐸(𝑍𝑍′𝑢𝑢�) = 0             (15) 

Using equation (14), the moments condition for the 𝑖𝑖-th condition is: 

𝐸𝐸 = �𝑧𝑧𝑖𝑖  
�𝑦𝑦𝑖𝑖 − 𝜙𝜙 � X𝑖𝑖

′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 ��𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 �

𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 � �1 −  𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

��
� = 0                                                                             (16) 

where 𝑧𝑧𝑖𝑖 indicates the 𝑖𝑖-th row of a matrix of instruments Z.  

Finally, the following equation shows the set of conditions of the GMM estimation: 

𝑚𝑚(𝛽𝛽, 𝜆𝜆) =
1
𝑛𝑛
�ℎ𝑖𝑖

𝑛𝑛

𝑖𝑖=1

  
�𝑦𝑦𝑖𝑖 − 𝜙𝜙 � X𝑖𝑖

′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 ��  𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 �

𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

 � �1 −  𝜙𝜙 �X𝑖𝑖′ 𝛽𝛽
𝜎𝜎𝑖𝑖

��
                                                              (17) 

Under the GMM estimation, the number of moments conditions is greater than the number 

of parameters (𝛽𝛽) to be estimated, so the set of values for 𝛽𝛽 and 𝜆𝜆 minimizes the following 

equation: 
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𝑚𝑚(𝛽𝛽, 𝜆𝜆)′𝑀𝑀−1𝑚𝑚(𝛽𝛽, 𝜆𝜆) = 𝑚𝑚𝑚𝑚𝑚𝑚        (18) 

where 𝑀𝑀 is a positive- definite matrix, which defines the weights assigned to each sample 

moments 𝑚𝑚(𝛽𝛽, 𝜆𝜆). This proves the consistency and asymptotic normality of the GMM 

procedure and derived the variance-covariance matrix Ω = (𝐼𝐼𝑛𝑛 − 𝜌𝜌𝑊𝑊)−1(𝐼𝐼𝑛𝑛 − 𝜌𝜌𝑊𝑊𝑇𝑇)−1 of 

the unknown parameter vector of 𝛽𝛽 and 𝜆𝜆. 

The GMM procedure implies a computational burden for large sample sizes since it 

requires the variance-covariance matrix Ω (that has a complex form) to be inverted in each 

iteration of the parameter 𝜆𝜆. 

However, the advantage of this procedure is that it provides the asymptotic variance of the 

estimator for a binary spatial error model, and also develops the hypothesis test for spatial 

error correlation (Calabrese and Elkink, 2013) based on the test on 𝑢𝑢�𝑖𝑖 which is the 

generalized residuals corrected for heteroscedasticity. 

To obtain the estimates and test the presence of spatial dependence for our spatial probit 

model using GMM, we follow the steps suggested by Arbia (2014), assuming an initial 

value for the vector |𝜆𝜆| < 1 before starting the iterative search of a solution. In that sense, we 

use a starting value of 𝜆𝜆0 = 0.4. This is explained in two ways: (1) when 𝜆𝜆0 takes values 

between 0.7 and 0.9, the computation time for each iteration increases in comparison with 

𝜆𝜆0 ranging between 0 and 0.6; (2) the LOG(flood) estimates are approximately the same; 

however, as 𝜆𝜆0 increases, LOG(flood) estimates vary significantly. 
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Figure 1. Map of Jakarta after the flood disaster in 2007 
Source: United Nations Department of Safety and Security (UNDSS), 2007. 
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Table 1. Summary of existing hedonic price studies related to flood events 

No          Author 
(publication year) Method Location       Results 

1. Skantz and Strickland 
(1987) 

OLS and Event 
Study hedonic TX, USA Negative; not 

significant 

2. Bin and Polasky 
(2004) D-D hedonic NC, USA -5.7%; significant 

3. Carbone et al. (2006) D-D hedonic FL, USA -20% to -30%; 
significant 

4. Daniel et al. (2007) 
 
OLS and Spatial 
hedonic 

Netherlands -7% to -13%; 
significant 

5. Bin et al (2008a) Spatial hedonic NC, USA -11%; significant 

6. Bin et al. (2008b) Spatial hedonic NC, USA -7.3%; significant 

7. Pope (2008) Spatial FE 
hedonic NC, USA -4%; significant 

8. Samarasinghe and 
Sharp (2008)                 Spatial hedonic     New Zealand -6.2%; significant 

9. Kousky (2010) D-D hedonic MI, USA -2.6%; significant 

10. Bin and Landry (2013) D-D hedonic NC, USA -5.7% and 8.8%; 
significant 

11. Kousky and Walls 
(2013) Simulation MI, USA -0.7%; not significant 

12. Rabassa et al. (2013) OLS and Spatial 
hedonic 

Buenos Aires, 
Argentina -17.3%; significant 
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Table 2. Summary statistics of variables in the hedonic equation 

  Mean Std. 
deviation 

Dependent variable     
Monthly rent (million rupiahs) 5.672 21.240 
      
Housing characteristics     
House size (m2) 74.524 189.086 
Number of rooms  5.112 3.162 
Wall material is cement/brick (1,0) 0.879 0.326 
Roof material is concrete/roof tiles (1,0) 0.477 0.500 
Floor material is cement/stone (1,0) 0.846 0.362 
Water source inside (1,0) 0.553 0.497 
House yard (1,0) 0.285 0.451 

     
Neighborhood characteristics     
Unemployment rate at the neighb. (pct) 5.548 3.359 
People w. univ. educ. the neighb. (pct) 9.310 10.970 
Accessible by public transport (1,0) 0.757 0.429 
Distance from district centre (km) 6.970 6.508 
Traffic (hourly number of vehicles passing 
by) 5.590 3.209 

House located along river basin (1,0) 0.330 0.470 

     
Environmental variable     
Flood in water level (cm) 42.326 23.136 

Note: Number of observations is 1,573. 
Source: 2007 Indonesian Family Life Survey (IFLS) and United Nations Department 
of Safety and Security (UNDSS). 
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Table 3. Results of basic and spatial lag models 
 Monthly rent     Basic     Spatial lag 

Housing characteristics         
LOG(House Size) 0.9928 *** 0.9973 *** 
  (0.0504)   (0.0492)   
Size/rooms (m2) 1.6779 *** 1.6757 *** 
  (0.6398)   (0.5548)   
Wall is cement/brick (1,0) 0.2914 *** 0.3068 *** 
  (0.1026)   (0.1162)   
Floor is ceramics/stone (1,0) 0.4974 *** 0.4918 *** 
  (0.0938)   (0.1069)   
Roof is concrete/roof tiles (1,0) -0.1274 * -0.1094   
  (0.0740)   (0.0757)   
Water source inside (1,0) -0.0464   -0.0149   
  (0.0785)   (0.0782)   
House yard (1,0) 0.0404   0.0270   
  (0.0908)   (0.0863)   
Neighborhood characteristics         
Unemployment rate (%) -0.0259 ** -0.0201   
  (0.0129)   (0.0125)   
People w. univ. education (%) 0.0402 *** 0.0469 *** 
  (0.0086)   (0.0096)   
Public transport access (1,0) 0.0432   0.0012   
  (0.0916)   (0.1021)   
LOG(Distance) -0.2379 *** -0.2446 *** 
  (0.0657)   (0.0624)   
LOG(Traffic) -0.1431   -0.1183   
  (0.1003)   (0.1061)   
House located along river basin (1,0) -0.2094 *** -0.2664 *** 
  (0.0782)   (0.0795)   
Environmental variable         
LOG(Flood) -0.1131 ** -0.1279 ** 

  (0.0567)   (0.1613)   
Constant 10.4006   10.7902   
Rho n/a   -0.1901 ** 
Number of observations 1231   1231   
R-squared 0.4291  n/a  
Variance ratio n/a  0.431  
Squared corr. n/a  0.432  
Moran’s I statistic -8.120  n/a  
LM Lag 9.366 *** n/a  
RLM Lag 0.344  n/a  
Note: ***Significant at 1% level. **Significant at 5% level. *Significant at 10% 
level. Numbers in brackets are standard deviations. 
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Table 4. Number of restricted activity days and flood level 
 Restricted days     Basic  Spatial lag 

Housing characteristics         
LOG(House Size) 0.1884 *** 0.1913  *** 
 (0.0430)  (0.0449)  
Size/rooms (m2) -0.3610  -0.3298  
 (0.2992)  (0.4246)  
Wall is cement/brick (1,0) -0.0688  -0.0754  
 (0.1047)  (0.1009)  
Floor is ceramics/stone (1,0) -0.0937  -0.1047  
 (0.0957)  (0.0896)  
Roof is concrete/roof tiles (1,0) -0.0465  -0.0428  
 (0.0641)  (0.0639)  
Water source inside (1,0) 0.0749  0.0735  
 (0.0639)  (0.0638)  
House yard (1,0) -0.2072 ** -0.2118 *** 
 (0.0806)  (0.0771)  
Neighborhood characteristics         
Unemployment rate (%) -0.0313 *** -0.0304 *** 
 (0.0104)  (0.0107)  
People w. univ. education (%) -0.0215 *** -0.0198 *** 
 (0.0072)  (0.0075)  
Public transport access (1,0) 0.1350  0.1275  
 (0.0881)  (0.0874)  
LOG(Distance) -0.0500  -0.0569  
 (0.0544)  (0.0551)  
LOG(Traffic) 0.0371  0.0060  
 (0.0849)  (0.0903)  
House located along river basin (1,0) 0.0572  0.0645  
 (0.0673)  (0.0651)  
Environmental variable         
LOG(Flood) 0.0713 * 0.1995 * 

 (0.0408)  (0.0459)  
Constant 1.0690  1.4015  
Rho n/a  -0.2067  
Number of observations 727  727  
R-squared 0.0731  n/a  
Variance ratio n/a  0.075  
Squared corr. n/a  0.076  
Moran’s I statistic -2.997  n/a  
LM Lag 1.707  n/a  
RLM Lag 0.015  n/a  
Note: ***Significant at 1% level. **Significant at 5% level. *Significant at 10% 
level. Numbers in brackets are standard deviations. 
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Table 5. Depression and flood level 

 Depression Probit 
(AME) 

Spatial 
Probit (GMM) 

Housing Characteristics         
LOG(House Size) 0.0211  0.0663  
 (0.0201)  (0.0558)  
Size/Room (m2) 0.1899  0.5098  
 (0.2127)  (0.5844)  
Wall is cement/brick (1,0) 0.0167  0.0588  
 (0.0461)  (0.1269)  
Floor is ceramics/stone (1,0) -0.0091  -0.0332  
 (0.0429)  (0.1181)  
Roof is concrete/roof tiles (1,0) -0.1322 *** -0.3390 *** 
 (0.0300)  (0.0793)  
Water source inside (1,0) 0.0115  0.0622  
 (0.0301)  (0.0856)  
House yard(1,0) -0.0092  -0.0369  
 (0.0338)  (0.0934)  
Neighborhood characteristics      
Unemployment rate (%) 0.0010  0.0123  
 (0.0048)  (0.0091)  
People w. univ. education (%) -0.0045  -0.0087  
 (0.0036)  (0.0095)  
Public transport access (1,0) 0.0326  0.0556  
 (0.0395)  (0.1103)  
LOG(Distance) -0.0303  -0.0591  
 (0.0242)  (0.0559)  
LOG(Traffic) -0.0231  -0.1431  
 (0.0410)  (0.0905)  
House along the river 0.0140  0.0123  
 (0.0295)  (0.0806)  
Environmental variable      
LOG(Flood) 0.0475 ** 0.0870 * 

 (0.0221)  (0.0508)  
Constant n/a  -0.2983  
Rho n/a  0.8069 *** 
Number of observations 1,230  1,230  
Wald chi-squared(10) 30.23  n/a  
Prob > chi-squared 0.0071  n/a  
Log pseudolikelihood -788.71  n/a  
Pseudo R-squared 0.02  n/a  

Note: ***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.  
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