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1 Introduction

Tests of contagion are designed to identify the presence of additional factors that oper-

ate solely during financial crises which have the effect of increasing the connectedness

of financial asset markets; see Dungey, Fry, Gonzalez-Hermosillo and Martin (2005)

for a review of modelling approaches to contagion. Many of the existing tests of con-

tagion proposed in the literature focus on either correlations (Forbes and Rigobon

(2002)), coskewness (Fry, Martin and Tang (2010)), or on cokurtosis and covolatility

(Fry-McKibbin and Hsiao (2016)). Correlations focus on the interaction between the

expected returns in financial markets, whereas coskewness focusses on the interaction

between the expected return and volatility in markets. Contagion through the cokurto-

sis channel measures the interaction effects between expected returns and skewness in

financial markets, whereas covolatility focusses on contagion from volatility spillovers.

An important feature of these tests is that they only consider testing specific contagion

channels separately and do not provide an omnibus test of the overall importance of

contagion.

Fry-McKibbin and Hsiao (2016) synthesize reasons for changes in the features of the

distributions of asset returns in crisis periods. Mean-variance optimization of financial

portfolios implies generally high excess returns in exchange for high risk (Sharpe (1964);

Lintner (1965); Black (1972)). However, the regularly used assumption that the mean

and variance are the only relevant moments for portfolio allocation misses important

dynamics due to the asymmetry and (fat) tails of return distributions. The theoretical

literature shows the reasons that higher order moments are important, particularly in

crisis periods or periods of regime change. These channels include incomplete informa-

tion and information asymmetries (Vaugirard (2007); Gârleanu et al. (2015)), liquidity

and leverage constraints (Allen and Gale (2000); Cifuentes et al., (2005); Brunnermeier

and Pedersen (2009); Caccioli et al. (2014)), safe havens (Vayanos, (2004)), wealth ef-

fects (Kyle and Xiong (2001)) and the (changing) risk preferences of investors (Kraus

and Litzenberger (1976); Harvey and Siddique (2000); Fry, Martin and Tang (2010)).

A common feature of existing tests of contagion is that they focus on a single

channel and do not necessarily consider the possibility of contagion operating through

multiple channels. In contrast to these previous approaches the aim of this paper

is to propose joint tests of contagion that allow for a range of contagious channels

simultaneously. The approach is to construct Lagrange multiplier tests which are based
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on the likelihood associated with the multivariate generalized normal distribution of

Fry, Martin and Tang (2010); see also Cobb, Koppstein and Chen (1983) and Lye and

Martin (1993) for a discussion of the properties of univariate generalized exponential

distributions. Working with this class of distributions provides a convenient framework

as the role of higher order moments including coskewness, cokurtosis and covolatility

are explicitly included in the form of the joint distribution. The finite sample properties

of the joint contagion tests are examined using a range of Monte Carlo experiments

with the sampling properties compared with a number of single equation contagion

tests proposed in the literature.

The joint contagion testing framework also shares a broader relationship with the

joint tests of multivariate normality originally proposed by Mardia (1970) and Bera and

John (1983) and extended by Doornik and Hansen (2008), Zhou and Shao (2014) and

Kim (2016). This earlier work tends to focus on joint multivariate tests of skewness and

kurtosis combined with covolatility. However, this literature does not focus on testing

for changes in these higher order moments which is desired in testing for contagion and

which is the focus of the present paper.

There exists alternative, but related approaches to test for contagion in asset mar-

kets encompassing higher order distributional moments. The most relevant examples

are copulas designed to test for comovements in the tails of the joint distribution and

related to a joint test of coskewness, cokurtosis, or both (Rodriguez (2007); Busetti and

Harvey (2011); Garcia and Tsafack (2011); Kenourgios, Samitas, and Paltalidis (2011)),

and GARCHmodels which allow for time varying changes in the variance relates to test-

ing for covolatility (Billio and Caporin (2005); Dungey, Milunovich, Thorp and Yang

(2015)). Other related methods include asset price jumps and their spillovers (Grothe,

Korniichuk, and Manner (2014) and Aït-Sahalia, Cacho-Diaz and Laeven (2015)), co-

exceedance tests for contagion (Favero and Giavazzi (2002), Bae et al. (2003), Pesaran

and Pick (2007)), factor models of contagion (Dungey et al. (2010); Bekaert et al.

(2014)), Markovian switching models (Gravelle, Kichian and Morley (2006); Rotta and

Pereira (2016)) and wavelet analysis (Gallegati (2012)).

The new joint tests are applied to studying global and regional contagion in Euro-

zone equity markets during three financial crises: the subprime crisis in 2007-08, the

global financial crisis (GFC) in 2008-09 and the European debt crisis from 2010-14.

Using daily equity returns the empirical results highlight the importance of higher or-

der moment channels in transmitting contagion across equity markets globally as well
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as regionally. The empirical results also show that for some countries traditional mea-

sures of contagion based on correlations can fail to detect contagion when it is present

in higher order moments.

The rest of the paper proceeds as follows. Section 2 provides the main framework

for constructing joint tests of contagion. The finite sample properties of the tests are

then presented in Section 3 using a range of Monte Carlo experiments. Both size and

power properties of the joint tests are presented which are compared with a number

of existing tests proposed in the literature that focus on single channels of contagion.

The proposed tests are applied in Section 4 to study the presence of contagion in the

Eurozone during three financial crises. Concluding comments are given in Section 5.

All derivations are given in Appendix A.

2 Testing Framework

This section provides the main framework for constructing joint tests of contagion.

Consider the bivariate generalized exponential distribution proposed by Fry, Martin

and Tang (2010) for the two random variables ri and rj

f(rit, rjt) = exp (ht − ηt) , (1)

where ht is specified as

ht = −1

2

(
1

1− ρ2

)((
rit − µi
σi

)2

+

(
rjt − µj
σj

)2

− 2ρ

(
rit − µi
σi

)(
rjt − µj
σj

))
+θ4

(
rit − µi
σi

)1(rjt − µj
σj

)2

+ θ5

(
rit − µi
σi

)2(rjt − µj
σj

)1

+θ6

(
rit − µi
σi

)1(rjt − µj
σj

)3

+ θ7

(
rit − µi
σi

)3(rjt − µj
σj

)1

+θ8

(
rit − µi
σi

)2(rjt − µj
σj

)2

,

(2)

and η is the normalizing constant

ηt = ln

∫ ∫
exp (ht) dridrj. (3)

The distribution in (1) is an extension of the univariate generalized distribution dis-

cussed by Cobb, Koppstein and Chen (1983) and Lye and Martin (1993). The choice

of ht represents the generalized bivariate normal distribution which is a subordinate
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distribution of the generalized exponential class. A variant of this distribution is the

bivariate generalized lognormal distribution which is used by Fry-McKibbin, Martin

and Tang (2014) to study the effects of pricing options during periods of financial stress.

The parameters θ4 to θ8 control departures from bivariate normality with θ4 and θ5

controlling coskewness, θ6 and θ7 controlling cokurtosis and θ8 controlling covolatility.

In the special case where θ4 = θ5 = θ6 = θ7 = θ8 = 0 in (2), the distribution in (1

reduces to the bivariate normal distribution. In applying the framework to testing for

contagion ri will represent the returns on equities in the ith country.

For a sample of t = 1, 2, · · · , T observations the log-likelihood corresponding to (1)
is of the form

lnL (Θ) =
1

T

T∑
t=1

ht (Θ)− 1

T

T∑
t=1

ηt (Θ) , (4)

where Θ =
{
µi, µj, σ

2
i , σ

2
j , ρ, θ4, θ5, θ6, θ7, θ8

}
is a vector of the unknown parameters. A

convenient testing framework is to use the Lagrange multiplier test as given by

LM = TG(Θ̂)′I(Θ̂)−1G(Θ̂), (5)

where Θ̂ represent the maximum likelihood estimator of Θ under the null hypothesis,

G(Θ̂) is the score function evaluated at Θ̂ given by

G(Θ̂) =

(
∂ lnL (Θ)

∂Θ

)∣∣∣∣
Θ=Θ̂

, (6)

and I(Θ̂) is the asymptotic information matrix evaluated at Θ̂. Fry, Martin and Tang

(2010) show that the information matrix I (θ) has a particularly convenient form given

by

I (Θ) = E

[
∂ht
∂Θ

∂ht
∂Θ′

]
− E

[
∂ht
∂Θ

]
E

[
∂ht
∂Θ′

]
. (7)

The advantage of this result is that it simplifies the construction of Lagrange multiplier

tests of higher order comoments as the expectations in (7) are evaluated under the null

hypothesis. A further advantage of constructing tests of higher comoments this way is

that for certain distributional specifications of (2) the form of the Lagrange multiplier

statistic is equivalent to existing comoment tests adopted in the literature by Fry,

Martin and Tang (2010), and Fry-McKibbin and Hsiao (2016) for example.

The Lagrange multiplier test statistic in (5) is asymptotically distributed under the

null hypothesis as χ2
p, where p represents the number of restrictions imposed on the

model. Alternatively, a robust version of the Lagrange multiplier test in (5) is obtained
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by replacing the information matrix I(Θ̂) by the corresponding quasi maximum likeli-

hood covariance estimator H(Θ̂)J(Θ̂)−1H(Θ̂) where H(Θ̂) is the Hessian and J(Θ̂) is

the outer product of the gradient matrix computed as

J(Θ̂) =
1

T

T∑
t=1

gt(Θ̂)g′t(Θ̂), (8)

where gt = ∂ lnLt (Θ) /∂Θ = ∂ht/∂Θ− ∂ηt/∂Θ is the gradient vector at time t.

In developing the tests of contagion the following notation is used. The first period

corresponds to the noncrisis period which is denoted as x, while the second period

corresponds to the crisis period and is denoted as y. The sample sizes of the two

periods are Tx and Ty respectively. The correlation between the two asset returns is

denoted as ρx (noncrisis) and ρy (crisis). The estimated parameters µ̂ix, µ̂jx, µ̂iy and

µ̂jy, are the sample means of the asset returns for markets i and j during the periods

x and y respectively, and σ̂ix, σ̂jx, σ̂iy and σ̂jy are the corresponding sample standard

deviations.

2.1 Joint Contagion Test

The first joint contagion test presented is the most general test statistic as it is designed

to identify contagion through changes in coskewness, cokurtosis and covolatility. Let

coskewness in the noncrisis (x) and crisis (y) periods be

ψ̂k(r
2
i , r

1
j ) =

1

Tk

Tk∑
t=1

(
rit − µ̂ik
σ̂ik

)2(rjt − µ̂jk
σ̂jk

)1

, k = x, y (9)

ψ̂k(r
1
i , r

2
j ) =

1

Tk

Tk∑
t=1

(
rit − µ̂ik
σ̂ik

)1(rjt − µ̂jk
σ̂jk

)2

, k = x, y, (10)

and the corresponding cokurtosis moments be

ξ̂k(r
3
i , r

1
j ) =

1

Tk

Tk∑
t=1

(
rit − µ̂ik
σ̂ik

)3(rjt − µ̂jk
σ̂jk

)1

, k = x, y (11)

ξ̂k(r
1
i , r

3
j ) =

1

Tk

Tk∑
t=1

(
rit − µ̂ik
σ̂ik

)1(rjt − µ̂jk
σ̂jk

)3

, k = x, y. (12)

Finally, the covolatility moments are defined as

ϕ̂k(r
2
i , r

2
j ) =

1

Tk

Tk∑
t=1

(
rit − µ̂ik
σ̂ik

)2(rjt − µ̂jk
σ̂jk

)2

, k = x, y. (13)

The joint contagion test statistic is defined in terms of the changes in the comoments

as given in equations (9) to (13) between the crisis and noncrisis periods. This statistic
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consists of six components with the first five components corresponding to the five

excess comoments being tested and the sixth capturing the interaction effects between

the pertinent excess comoments. The form of the statistic is (see Appendix A for

details)

JOINT = J12 + J21 + J13 + J31 + J22 + JI , (14)

where

J12 =
(ψ̂y(r

1
i , r

2
j )− ψ̂x(r1

i , r
2
j ))

2

2(1− υ̂6
y|xi)

Ty(2υ̂
2
y|xi + 1)

+
2(1− ρ̂6

x)

Tx(2ρ̂
2
x + 1)

, J21 =
(ψ̂y(r

2
i , r

1
j )− ψ̂x(r2

i , r
1
j ))

2

2(1− υ̂6
y|xi)

Ty(2υ̂
2
y|xi + 1)

+
2(1− ρ̂6

x)

Tx(2ρ̂
2
x + 1)

,

are the excess coskewness components,

J13 =
(ξ̂y(r

1
i , r

3
j )− ξ̂x(r1

i , r
3
j ))

2

6(v̂10
y|xi
− v̂8

y|xi
− v̂2

y|xi
+ 1)

Ty(3v̂4
y|xi

+ 2v̂2
y|xi

+ 1)
+

6(ρ̂10
x − ρ̂8

x − ρ̂2
x + 1)

Tx(3ρ̂
4
x + 2ρ̂2

x + 1)

,

J31 =
(ξ̂y(r

3
i , r

1
j )− ξ̂x(r3

i , r
1
j ))

2

6(v̂10
y|xi
− v̂8

y|xi
− v̂2

y|xi
+ 1)

Ty(3v̂4
y|xi

+ 2v̂2
y|xi

+ 1)
+

6(ρ̂10
x − ρ̂8

x − ρ̂2
x + 1)

Tx(3ρ̂
4
x + 2ρ̂2

x + 1)

,

are the excess cokurtosis components and

J22 =
(ϕ̂y(r

2
i , r

2
j )− ϕ̂x(r2

i , r
2
j ))

4(v̂2
y|xi
− 1)2(v̂4

y|xi
+ 1)

Ty(v̂4
y|xi

+ 6v̂2
y|xi

+ 1)
+

4(ρ̂2
x − 1)2(ρ̂4

x + 1)

Tx(ρ̂
4
x + 6ρ̂2

x + 1)

,
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in the excess covolatility component. The last term in (14) captures the interaction

effects between the excess higher order moments

JI = −
(ψ̂y(r

1
i , r

2
j )− ψ̂x(r1

i , r
2
j ))(ψ̂y(r

2
i , r

1
j )− ψ̂x(r2

i , r
1
j ))

1− υ̂6
y|xi

Ty(υ̂
3
y|xi + 2υ̂y|xi)

+
1− ρ̂6

x

Tx(ρ̂
3
x + 2ρ̂x)

+
(ξ̂y(r

1
i , r

3
j )− ξ̂x(r1

i , r
3
j ))(ξ̂y(r

3
i , r

1
j )− ξ̂x(r3

i , r
1
j ))

3(v̂10
y|xi
− v̂8

y|xi
− v̂2

y|xi
+ 1)

Ty(v̂6
y|xi

+ 2v̂4
y|xi

+ 3v̂2
y|xi

)
+

3(ρ̂10
x − ρ̂8

x − ρ̂2
x + 1)

Tx(ρ̂
6
x + 2ρ̂4

x + 3ρ̂2
x)

−
(ξ̂y(r

1
i , r

3
j )− ξ̂x(r1

i , r
3
j ))(ϕ̂y(r

2
i , r

2
j )− ϕ̂x(r2

i , r
2
j ))

(v̂2
y|xi
− 1)2(v̂4

y|xi
+ 1)

Ty(v̂3
y|xi

+ v̂
y|xi

)
+

(ρ̂2
x − 1)2(ρ̂4

x + 1)

Tx(ρ̂
3
x + ρ̂x)

−
(ξ̂y(r

3
i , r

1
j )− ξ̂x(r3

i , r
1
j ))(ϕ̂y(r

2
i , r

2
j )− ϕ̂x(r2

i , r
2
j ))

(v̂2
y|xi
− 1)2(v̂4

y|xi
+ 1)

Ty(v̂3
y|xi

+ v̂
y|xi

)
+

(ρ̂2
x − 1)2(ρ̂4

x + 1)

Tx(ρ̂
3
x + ρ̂x)

.

The term v̂
y|xi
in the above expressions is the Forbes and Rigobon (2002) heteroskedas-

tic adjusted correlation coeffi cient given by

v̂
y|xi

=
ρ̂y√

1 +

(
s2
iy − s2

ix

s2
ix

)(
1− ρ̂2

y

) . (15)

Under the null hypothesis of no contagion, the test statistic in (14) is asymptotically

distributed as JOINT d→ χ2
5, where the number of degrees of freedom is determined

by the number of restrictions imposed on (2) under the null hypothesis which for this

class of tests is θ4 = θ5 = θ6 = θ7 = θ8 = 0.

2.2 Joint Coskewness Contagion Test

The next proposed test is a restricted version of the joint test statistic JOINT in (14)

where the transmission channels of contagion solely arise from changes in coskewness
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(see Appendix A for details)

COSKEW =
(ψ̂y(r

1
i , r

2
j )− ψ̂x(r1

i , r
2
j ))

2 + (ψ̂y(r
2
i , r

1
j )− ψ̂x(r2

i , r
1
j ))

2

2(1− v̂6
y|xi

)

Ty(2v̂2
y|xi

+ 1)
+

2(1− ρ̂6
x)

Tx(2ρ̂
2
x + 1)

(16)

−
(ψ̂y(r

1
i , r

2
j )− ψ̂x(r1

i , r
2
j ))(ψ̂y(r

2
i , r

1
j )− ψ̂x(r2

i , r
1
j ))(

(1− v̂6
y|xi

)
)

Ty(v̂3
y|xi

+ 2v̂
y|xi

)
+

(1− ρ̂6
x)

Tx(ρ̂
3
x + 2ρ̂x)

.

The first two components represent the types of coskewness being tested and the third

component captures the interaction effect between the two coskewness comoments.1

Under the null hypothesis this statistic is asymptotically distributed as COSKEW d→
χ2

2.

2.3 Comparison with Existing Tests

The joint tests given in (14) and (16) are by construction tests of several potential

transmission channels of contagion operating simultaneously. In contrast, many of

the existing tests of contagion adopted in the literature tend to focus on individual

contagion channels.

The Fry, Martin and Tang (2010) contagion test focuses on changes in coskewness

between the crisis and noncrisis periods given by

CS21 =
(ψ̂y(r

2
i , r

1
j )− ψ̂x(r2

i , r
1
j ))

2

4ν̂2
y|xi + 2

Ty
+

4ρ̂2
x + 2

Tx

, (17)

where ψ̂k(r
2
i , r

1
j ) k = x, y is defined in (9). Under the null hypothesis CS21 is asymptot-

ically distributed as CS21
d→ χ2

1. Reversing the order of the components of the statistic

in (17) so as to test for coskewness between ri and r2
j yields a second version of the

coskewness test denoted as CS12, which has the same asymptotic distribution.

1A natural extension of the proposed joint tests is to construct a test focussing on the even-ordered
moments of cokurtosis and covolatility. This test is not constructed here but could be done following
the strategy of the joint test COSKEW. Instead, the approach adopted here is to interpret jointly
the two joint tests JOINT and COSKEW and infer the relative role of higher order even moment
channels. This strategy is further complemented by also interpreting the properties of the joint tests
together with the single contagion channel tests as well.
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Instead of focussing on coskewness, Fry-McKibbin and Hsiao (2016) base their

contagion test on a change in cokurtosis

CK31 =
(ξ̂y(r

3
i , r

1
j )− ξ̂x(r3

i , r
1
j ))

2

18v̂2
y|xi + 6

Ty
+

18ρ̂2
x + 6

Tx

, (18)

where ξ̂k(r
3
i , r

1
j ) k = x, y is defined in (11). Under the null hypothesis CK31 is as-

ymptotically distributed as CK31
d→ χ2

1. As with the coskewness test in (17), the

components can be reversed to test for cokurtosis between ri and r3
j , to produce a test

statistic denoted as CK13 which has the same asymptotic distribution as CK31.

Fry-McKibbin and Hsiao (2014) also propose a covolatility test of contagion which

is designed to identify significant changes in covolatility during a financial crisis. The

test is given by

CV22 =
(ϕ̂y(r

2
i , r

2
j )− ϕ̂x(r2

i , r
2
j ))

2

4v̂4
y|xi + 16v̂2

y|xi + 4

Ty
+

4ρ̂4
x + 16ρ̂2

x + 4

Tx

, (19)

where ϕ̂k(r
2
i , r

2
j ) k = x, y is defined in (13). Under the null hypothesis the CV22 statistic

is asymptotically distributed as CV22
d→ χ2

1.

Finally the variant of the Forbes and Rigobon (2002) contagion test proposed by

Fry, Martin and Tang (2010) is based on comparing the (adjusted) correlations between

the crisis and noncrisis periods

FR =

 v̂y|xi − ρ̂x√
var

(
v̂y|xi − ρ̂x

)
2

, (20)

where v̂y|xi is the adjusted correlation coeffi cient in the crisis period as defined in (15).

The variance in (20) is given by

V ar
(
ν̂y|xi − ρ̂x

)
= V ar

(
ν̂y|xwi

)
+ V ar (ρ̂x)− 2Cov

(
ν̂y|xi , ρ̂x

)
,

where

V ar
(
ν̂y|xi

)
=

1

2

(1 + δ)2[
1 + δ

(
1− ρ2

y

)]3 [ 1

Ty

((
2− ρ2

y

) (
1− ρ2

y

)2
)

+
1

Tx

(
ρ2
y

(
1− ρ2

y

)2
)]

,

V ar (ρ̂x) =
1

Tx

(
1− ρ2

x

)2
,

Cov
(
ν̂y|xi , ρ̂x

)
=

1

2

1

Tx

ρyρx
(
1− ρ2

y

)
(1− ρ2

x) (1 + δ)√[
1 + δ

(
1− ρ2

y

)]3 ,
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and δ = (s2
iy − s2

ix)/s
2
ix represents the proportionate change in the variance of ri across

the two sample periods, and s2
ix and s

2
iy are the respective sample variances. Under the

null hypothesis the FR statistic is asymptotically distributed as FR d→ χ2
1.

3 Finite Sample Properties

The finite sample properties of the joint tests JOINT in (14) and COKEW in (16)

are now investigated using a range of Monte Carlo experiments. For comparison, the

finite sample properties of the single channel contagion tests proposed in the literature

given by (17) to (20) are also investigated. The data generating process is based on

the bivariate generalized normal distribution in (1) where the population means and

variances are standardized at µi = µj = 0, and σ2
i = σ2

j = 1, respectively, yielding the

joint density function

f(ri, rj) = exp

[
−
(
r2
i + r2

j − 2ρrirj

2 (1− ρ2)

)
+ θ4rir

2
j + θ5r

2
i rj + θ6rir

3
j + θ7r

3
i rj + θ8r

2
i r

2
j − η

]
.

(21)

3.1 Size

The size properties of the contagion tests are conducted under the null hypothesis of

no contagion by imposing the restrictions

θ4 = θ5 = θ6 = θ7 = θ8 = 0,

on the data generating process so (21) reduces to a bivariate normal distribution in

the noncrisis and crisis periods. The sample sizes are set to Tx = 500 for the noncrisis

period and vary over the range Ty = {50, 100, 200, 300, 400, 500} for the crisis period.
The number of replications in all simulation experiments is 50000.

The size properties of the joint contagion tests, JOINT and COSKEW, are pre-

sented in Table 1 for the case where the correlation parameter in (21) is set at ρ = 0

in the noncrisis and crisis periods. The sizes for the joint tests are based on the 5%

asymptotic χ2
5 critical value in the case of JOINT and the χ

2
2 critical value in the case

of COSKEW. Also presented are the single channel contagion tests consisting of the

covolatility test CV22 in (19), the cokurtosis test CK31 in (18), the coskewness test

CS21 in (17) and the Forbes-Rigobon correlation test FR in (20). For these tests the

sizes are based on the 5% asymptotic χ2
1 critical value.

10



Table 1 shows that the joint test JOINT is slightly over sized, but is very stable

across all crisis sample sizes from small samples of Ty = 50 to larger samples of size

Ty = 500. The coskewness joint test COSKEW exhibits slightly better sizes than

the JOINT test as they are closer to the nominal size of 5%. As with the JOINT

test, the sizes of the COSKEW test are also vary stable across all crisis sample sizes

investigated. This discrepancy in the size of the two joint tests is largely the result

of COSKEW just being a function of third order moments, whereas JOINT also

requires fourth order moments which are relatively more diffi cult to estimate precisely

than third order moments. There is also a further loss in precision with the JOINT

test over the COSKEW test which is a reflection that the latter test is just based on

testing for coskewness whereas the former test requires testing both coskewness and

the fourth order comoments of cokurtosis and covolatility.

The single channel contagion tests CV22, CK31 and CS21 in Table 1 tend to be

undersized for crisis sample sizes of Ty = 50. The extent of these statistics being

undersized is a function of the order of the moment being tested with CV22 being more

undersized that CK31, which in turn, is more undersized than CS21. The simulation

results show that all three tests are consistent with the empirical sizes approaching the

nominal 5% level as the sample size for the crisis period increases.

The FR test in Table 1 is marginally oversized for crisis samples of size Ty = 50,

where the empirical size is 0.071 compared to the nominal size of 5%. As with the single

channel higher order moment tests, the size experiments show that the FR test is also

a consistent test with its size quickly approaching the nominal size of 5% for increases

in the crisis period Ty.

3.2 Power

The power properties of the contagion tests are now investigated where contagion oc-

curs in the crisis period through the higher order moment channels. In all experiments

the noncrisis and crisis sample sizes are set at Tx = Ty = 500. Four experiments are

conducted. The first three represent cases where a single channel of contagion operates,

whereas for the fourth experiment multiple channels are allowed to operate. In simulat-

ing the generalized bivariate normal distribution under the alternative hypothesis, as

there is no analytical expression for the inverse of its cumulative distribution function

the random variables are simulated by numerical evaluation of the inverse-transform.
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Table 1:

Size properties of contagion tests based on the 5% nominal significance level. The
sample size for the noncrisis period is Tx = 500 whereas for the crisis period it ranges

over Ty = {50, 100, 200, 300, 400, 500} . The number of replications is 50000.

Statistic Sample size in the crisis period (Ty)
50 100 200 300 400 500

JOINT 0.071 0.071 0.072 0.069 0.067 0.069
COSKEW 0.056 0.060 0.060 0.061 0.058 0.059
CV22 0.029 0.040 0.046 0.047 0.048 0.046
CK31 0.036 0.044 0.048 0.047 0.049 0.049
CS21 0.043 0.048 0.048 0.051 0.048 0.051
FR 0.071 0.059 0.053 0.052 0.052 0.051

3.2.1 Experiment I

In the first experiment contagion in the crisis period is transmitted through the co-

volatility channel, with the generalized bivariate normal distribution specified as

f(ri, rj) = exp

[
−
r2
i + r2

j

2
+ θ8r

2
i r

2
j − η

]
, (22)

where the covolatility parameter θ8 takes on the values

θ8 = {0.0,−0.1,−0.2,−0.3,−0.4,−0.5,−0.6,−0.7,−0.8,−0.9},

with increasing (absolute) values representing increasing covolatility in the crisis period.

The noncrisis period is where θ8 = 0.0, corresponding to the standardized bivariate

normal distribution with ρ = 0.

The results of this experiment for the joint and single channel contagion tests are

given in the first block of Table 2 under the header Experiment I. The power of the

tests are size adjusted so the power reported under the null hypothesis θ8 = 0, equals

the nominal size value of 0.05. The joint test JOINT displays increasing power as

the covolatility parameter θ8 in creases in absolute terms from 0.0 to −0.9. The single

channel covolatility test CV22, also shows increasing power and indeed exhibits higher

power than the JOINT test for this experiment. This is a reflection that the CV22 sta-

tistic is solely designed to test for contagion arising from covolatility whereas JOINT

by its very nature demonstrates some loss of power due to it being a joint test that

is testing across several other contagious channels which are not all active in this ex-

periment. Not surprisingly the joint and single channel coskewness tests COSKEW
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and CS21 respectively, exhibit zero power as the experiment is about contagion from

covolatility and not from coskewness. Interestingly, even though the cokurtosis test

CK31 is a test about fourth order moments, it also exhibits zero power in identifying

changes in contagion arising from covolatility.

As with the coskewness and cokurtosis tests, the FR test also lacks power in testing

for contagion from covolatility. This observation is an important result as the FR

statistic is commonly used as a test of contagion in empirical work and which commonly

does not identify contagion; see for example, the empirical applications in Forbes and

Rigobon (2002). This result would then imply that even if the FR test fails to identify

contagion, that does not necessarily mean that contagion is not operating as there

could be other active contagious channels operating at higher order moments.

3.2.2 Experiment II

The second experiment is based on the contagion channel operating during the crisis

period through coskewness, with the generalized bivariate normal distribution specified

as

f(ri, rj) = exp

[
−
r2
i + r2

j

2
+ θ5r

2
i rj − 0.5r2

i r
2
j − η

]
, (23)

where the coskewness parameter θ5 takes on the values

θ5 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},

with increasing values representing increasing coskewness in the crisis period. The

noncrisis period is where there is no coskewness θ5 = 0.0, whilst the crisis period is

where θ5 > 0.

The results of this experiment are given in the second block of Table 2 under the

header Experiment II. Both joint contagion tests JOINT and COSKEW demonstrate

monotonically increasing power functions. The COSKEW joint test displays greater

power than the JOINT test as the channel of contagion operating is just coskewness in

this experiment. In fact the single coskewness channel test CS21 exhibits even greater

power than the joint coskewness test COSKEW as the latter statistic is testing across

both types of contagion channels, whereas only one of the two channels is operating

in the experiment. As expected, the contagion single channel contagion tests based on

even order moments, CV22, CK31 and FR, exhibit no or very little power in identifying

the coskewness channel. Again, as with experiment I, the widely used FR test does

not have power in detecting higher order moment contagion.
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Table 2:

Size adjusted power properties of contagion tests. The noncrisis and crisis sample
sizes are Tx = Ty = 500. The number of replications is 50000.

Statistic Experiment Type

Experiment I based on equation (22)
θ8 = 0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70 -0.80 -0.90

JOINT 0.05 0.13 0.29 0.42 0.55 0.68 0.76 0.82 0.83 0.90
COSKEW 0.05 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02
CV22 0.05 0.38 0.71 0.89 0.95 0.99 0.99 1.00 1.00 1.00
CK31 0.05 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03
CS21 0.05 0.03 0.01 0.02 0.02 0.02 0.03 0.01 0.01 0.02
FR 0.05 0.05 0.04 0.05 0.04 0.04 0.02 0.02 0.03 0.02

Experiment II based on equation (23)
θ5 = 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

JOINT 0.05 0.04 0.04 0.04 0.06 0.10 0.14 0.31 0.53 0.83
COSKEW 0.05 0.07 0.12 0.23 0.38 0.58 0.77 0.92 0.98 0.99
CV22 0.05 0.08 0.06 0.07 0.07 0.08 0.06 0.08 0.10 0.11
CK31 0.05 0.06 0.05 0.06 0.05 0.05 0.07 0.06 0.07 0.06
CS21 0.05 0.07 0.16 0.30 0.52 0.72 0.88 0.98 0.99 1.00
FR 0.05 0.04 0.07 0.05 0.06 0.06 0.06 0.05 0.06 0.07

Experiment III based on equation (24)
ρ = 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

JOINT 0.05 0.04 0.07 0.11 0.16 0.23 0.34 0.44 0.50 0.56
COSKEW 0.05 0.04 0.06 0.07 0.09 0.12 0.17 0.18 0.26 0.31
CV22 0.05 0.05 0.05 0.05 0.06 0.07 0.06 0.07 0.05 0.05
CK31 0.05 0.05 0.06 0.06 0.07 0.06 0.06 0.05 0.05 0.05
CS21 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04
FR 0.05 0.37 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Experiment IV based on equation (25)
θ8 = 0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70 -0.80 -0.90
ρ = 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

JOINT 0.05 0.14 0.41 0.71 0.91 0.99 1.00 1.00 1.00 1.00
COSKEW 0.05 0.03 0.03 0.02 0.03 0.03 0.04 0.05 0.07 0.13
CV22 0.05 0.34 0.69 0.86 0.95 0.98 1.00 1.00 1.00 1.00
CK31 0.05 0.04 0.09 0.19 0.38 0.65 0.89 0.99 1.00 1.00
CS21 0.05 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01
FR 0.05 0.19 0.49 0.79 0.96 1.00 1.00 1.00 1.00 1.00
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3.2.3 Experiment III

The third experiment allows for contagion to operate through the supposedly more

traditional correlation channel. Under this scenario the FR test is expected to be more

powerful as this is the type of situation that this test is designed for. The generalized

bivariate normal distribution for the experiment is specified as

f(ri, rj) = exp

[
−
(
r2
i + r2

j − 2ρrirj

2 (1− ρ2)

)
− 0.5r2

i r
2
j − η

]
, (24)

where the correlation parameter is chosen as

ρ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The noncrisis period corresponds to ρ = 0.0, and the crisis period to ρ > 0.

The results of this experiment are given in third block of Table 2. As expected

the FR test is the most powerful of all tests, including all joint and single channel

tests, and reaches power of unity for ρ = 0.3. The joint tests JOINT and COSKEW

nonetheless still exhibit some power in identifying the correlation channel even though

these tests are primarily designed to test for contagion arising from third or fourth

order moments. Effectively this power is coming about indirectly through the joint test

statistics being a function of the correlation parameters: the Forbes-Rigobon adjusted

correlation parameter in the crisis period and the unadjusted correlation parameter in

the noncrisis period. Of the two joint tests, it is the more general version given by

JOINT which displays better power properties than the COSKEW test. In contrast,

the single channel higher order moment contagion tests CV22, CK31 and CS21, display

no power. Whilst this result is not surprising given that the contagion mechanism is

operating through the correlation channel the joint tests nonetheless still exhibit power

for this experiment. From a comparison of the joint and single channel contagion tests,

it would suggest that it is the interaction terms in the joint tests which is enabling the

joint tests to identify indirectly the contagion channel.

3.2.4 Experiment IV

The final experiment combines experiments I and III by allowing for multiple con-

tagion channels through the cokurtosis parameter θ8 and the correlation parameter ρ.

The joint density function is

f(ri, rj) = exp

[
−
(
r2
i + r2

j − 2ρrirj

2 (1− ρ2)

)
− θ8r

2
i r

2
j − η

]
, (25)
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with respective values

θ8 = {0.0,−0.1,−0.2,−0.3,−0.4,−0.5,−0.6,−0.7,−0.8,−0.9},

and

ρ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The noncrisis period corresponds to the parameter pair of θ8 = 0.0 and ρ = 0.0. For

the crisis period the θ8 and ρ parameters increase in magnitude with the first pair of

parameters being θ8 = −0.1 and ρ = 0.1.

The results of the multiple contagion experiment are given in the fourth block of

Table 2. The power function of the joint contagion test JOINT exhibits monotonically

increasing power reaching a power of 1.0 for the parameter pair θ8 = −0.6 and ρ = 0.6.

This is supported by the CV22 and FR tests which exhibit good power properties as

well. In fact, these single contagion channel tests yield marginally higher power than

the joint test JOINT which as in previous experiments is a reflection of the properties

of the joint test testing across active and inactive contagion channels.

An interesting result in Table 2 is that the cokurtosis single contagion channel sta-

tistic based on CK31 also has a monotonically increasing power function, albeit at a

slower rate than the JOINT test and the two single channel tests CV22 and FR. This

result is especially interesting given the fact that in the single channel experiments

where the contagious channel operated through θ8 in Experiment I and through ρ in

Experiment III, the CK31 tests exhibit no power. This suggests that for this multiple

channel contagion experiment the combination of increasing covolatility and correla-

tion, the CK31 statistic is nonetheless able to identify increasing levels of contagion

even though the true contagion channel is not arising from the interaction of skewness

from one asset market and the mean from another asset market.

In contrast to the power properties of these even-ordered moment tests, the odd-

ordered moment tests based on the joint channel test COSKEW has either no or very

little power, which again is to be expected given that the active contagion channels

are based on even and not odd ordered moments. A similar result also occurs for the

single channel coskewness test CS21.

4 Application to Eurozone Equity Markets

The joint contagion tests in equations (14) and (16), as well as the single channel tests

in equations (17) to (20) are now applied to identifying contagion in equity markets in
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the Eurozone during three periods of financial crises: the subprime crisis, the GFC and

the European debt crisis. Ten representative countries from within the Eurozone are

chosen for the empirical analysis and are Austria, Belgium, France, Germany, Greece,

Ireland, Italy, the Netherlands, Portugal and Spain.2 Two types of contagion are

investigated. The first represents global contagion where the external effects of shocks

in global equity markets, taken to be the US equity market, on the Eurozone equity

markets are identified. The second is regional contagion where it is the effects of shocks

internal to the Eurozone that are identified. For this application Germany is chosen to

be the conduit market of contagion. The choice of the US and German equity markets

as the source of contagion is consistent with the centre and periphery arguments that

a crisis transmits across asset markets through a major financial centre, even if that

financial centre does not appear to be affected by the crisis (Kaminsky and Reinhart

(2003)).

The data are daily percentage equity returns on the 10 countries in the Eurozone

plus the US. The data are plotted in Figure 1 which begins January 4, 2005 and ends

November 28, 2014.3 The shaded areas on the figure correspond to three financial

market crisis periods beginning with the subprime crisis, followed by the GFC and the

European debt crisis respectively, while the non shaded area is the non crisis period.

The shading demarcates the noncrisis and crisis dates which are: January 4, 2005 to

July 25, 2007 for the noncrisis period; July 26, 2007 to September 14, 2008 for the

subprime crisis; September 15, 2008 to December 31, 2009 for the GFC; and from

January 1, 2010 to November 28, 2014 for the European debt crisis.4

Summary statistics of the country equity returns are provided in Table 3 for the

noncrisis period (January 4, 2005 to July 25, 2007) and the total crisis period (July 26,

2Not all Eurozone countries are included in the analysis. Seven countries were omitted as they
joined the Eurozone after 2005 where our starts. These are Cyprus (2008), Estonia (2011), Latvia
(2014), Lithuania (2015), Malta (2008), Slovakia (2009) and Slovenia (2007). Finland and Luxembourg
were also excluded as they were not considered to be key crisis countries.

3The data source is Datastream. The mnemonics are: Austria - Austrian Traded index (ATXIN-
DEX); Belgium - BEL 20 price index (BGBEL20); France - France CAC 40 price index (FRCAC40);
Germany - MDAX Frankfurt price index (MDAXIDX); Greece - Athex composite price index (GRA-
GENL); Italy - FTSE MIB price index (FTSEMIB); Ireland - Ireland Se Overall price index (ISE-
QUIT); The Netherlands - AEX price index (AMSTEOE); Portugal - Portual PSI All Share price
index (POPSIGN); Spain - IBEX 35 price index (IBEX351); US - Dow Jones Industrials price index
(DJINDUS).

4This choice of crisis periods is based on a combination of institutional features arising from par-
ticular crisis trigger events, endogenous structural break testing using a generalization of the Diebold
and Chen (1996) test to a multivariate VAR setting. A likelihood ratio test is used with standard
errors based on a Wild paired bootstrap to correct for heteroskedastic shocks and to preserve the
contemporaneous correlation structure in equity returns across asset markets.

17



15

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

Austria

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

Belgium

15

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

France

15

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

Germany

12

8

4

0

4

8

12

16

05 06 07 08 09 10 11 12 13 14

Greece

16

12

8

4

0

4

8

12

05 06 07 08 09 10 11 12 13 14

Ireland

15

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

Italy

15

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

Netherlands

15

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

Portugal

12

8

4

0

4

8

12

16

05 06 07 08 09 10 11 12 13 14

Spain

10

5

0

5

10

15

05 06 07 08 09 10 11 12 13 14

US

Figure 1: European and US percentage equity returns, January 4, 2005 to November
28, 2014. The figure highlights 4 distinct periods: the noncrisis period (January 12,
2005 to July 25, 2007), the subprime crisis (July 26, 2007 to September 14, 2008),
the GFC (September 15, 2008 to December 31, 2009) and the European debt crisis
(January 1, 2010 to November 28, 2014).

18



2007 to November 28, 2014) which encompasses the three crisis periods highlighted in

Figure 1.5 The crisis period is characterized by falls in the sample means and increases

in the standard deviations when compared to the noncrisis period. There is a change

in the returns distributions from negative skewness in the noncrisis period to either

smaller negative skewness or even positive skewness in the crisis period. Except for

Austria and Greece all countries experience increases in kurtosis which is also reflected

by all countries experiencing larger (absolute) returns.

Table 4 provides statistics on the comoments between equity returns in the US

and the 10 European equity markets during the noncrisis and crisis periods. The crisis

period is characterized by higher levels of correlations than in the noncrisis period. The

statistics for coskewness change depend upon which asset is defined as the squared term

in the coskewness calculation. Defining coskewness between equity returns in the US

and squared equity returns in Europe (r1
i , r

2
j ), which is the first coskewness term in

the table, all coskewness coeffi cients are less negative in the crisis period compared

to the noncrisis period with the exceptions of Germany, Ireland and the Netherlands.

Reversing this relationship so that coskewness is between squared US equity returns

and the Eurozone returns (r2
i , r

1
j ), almost all of the coeffi cients become more negative.

The only exception is Portugal where coskewness becomes only marginally less negative

in the crisis period. All European countries experience large increases in both types of

cokurtosis as well as covolatility with the US during the crisis period.

4.1 Global Contagion

The empirical results of testing for global contagion in equity markets from the US to

the Eurozone countries are presented in Table 5 for the three financial crises. To save

space only the p-values of each test are reported.

The results for the subprime crisis given in the first block of Table 5 show little

or no evidence of contagion through higher order moments for most countries. The

exceptions are Italy where JOINT is statistically significant at the 5% level with a p-

value of 0.026, and to a lesser extent Ireland where it is only statistically significant at

the 10% level. In the case of Italy as the COSKEW statistic is statistically insignificant

this suggests that the higher order moment effects are coming from the fourth order

5Time zones are accounted for by adjusting the returns using a two day rolling average of each
return. Market fundamentals are accounted for by using the residuals of a VAR(5) estimated for
all markets over the sample period (Forbes and Rigobon (2002), Fry, Martin and Tang (2010) and
Fry-McKibbin and Hsiao (2016)).
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Table 3:

Summary statistics of European and US percentage equity returns in the noncrisis
and crisis periods. The returns are adjusted for time zone differences and

autocorrelation.

Country Mean Min Max Std dev Skewness Kurtosis

Noncrisis: January 12, 2005 to July 25, 2007
Austria 0.103 -6.923 5.383 1.166 -0.730 7.891
Belgium 0.065 -3.643 3.716 0.877 -0.234 4.570
France 0.065 -4.037 3.698 0.925 -0.234 4.198
Germany 0.107 -4.931 4.492 1.057 -0.565 6.231
Greece 0.090 -5.262 5.015 1.100 -0.372 5.820
Ireland 0.054 -6.016 4.193 0.995 -0.654 7.159
Italy 0.043 -3.364 3.069 0.874 -0.280 3.900
Netherlands 0.069 -4.000 3.804 0.864 -0.173 4.765
Portugal 0.090 -2.340 3.086 0.699 0.078 4.063
Spain 0.077 -3.537 3.367 0.894 -0.187 4.164
US 0.038 -3.349 2.069 0.633 -0.333 4.718

Crisis: July 26, 2007 to November 28, 2014
Austria -0.044 -12.536 12.611 2.129 -0.147 7.652
Belgium -0.021 -9.507 10.440 1.736 -0.117 7.414
France -0.020 -11.737 12.143 1.930 0.074 8.496
Germany 0.018 -11.326 11.887 1.913 -0.113 7.135
Greece -0.092 -11.366 14.637 2.382 0.074 5.480
Ireland -0.033 -15.151 9.950 1.940 -0.537 8.422
Italy -0.042 -10.864 12.381 2.115 -0.026 6.749
Netherlands -0.018 -11.856 12.316 1.817 -0.073 10.155
Portugal -0.052 -12.916 10.530 1.689 -0.104 8.713
Spain -0.022 -10.657 14.968 2.036 0.098 7.925
US 0.013 -8.201 10.508 1.294 -0.058 12.593
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Table 4:

Comoment statistics between the percentage equity returns of the US (i) and the
Eurozone countries (j) during the noncrisis and crisis periods. All returns are

adjusted for time zone differences and autocorrelation.

Country Correlation Coskewness Cokurtosis Covolatility
(r1
i , r

1
j ) (r1

i , r
2
j ) (r2

i , r
1
j ) (r3

i , r
1
j ) (r1

i , r
3
j ) (r2

i , r
2
j )

Noncrisis: January 12, 2005 to July 25, 2007
Austria 0.252 -0.224 -0.222 1.720 1.240 1.550
Belgium 0.342 -0.133 -0.168 2.004 1.398 1.835
France 0.413 -0.086 -0.140 2.186 1.460 1.909
Germany 0.347 -0.112 -0.204 2.300 1.936 2.226
Greece 0.179 -0.124 -0.178 1.527 1.120 1.643
Ireland 0.256 -0.112 -0.152 1.649 1.707 1.728
Italy 0.385 -0.129 -0.174 2.076 1.342 1.771
Netherlands 0.394 -0.052 -0.107 1.948 1.449 1.745
Portugal 0.175 -0.104 -0.145 1.160 0.575 1.222
Spain 0.396 -0.111 -0.162 2.143 1.428 1.762

Crisis: July 26, 2007 to November 28, 2014
Austria 0.484 -0.101 -0.278 5.703 4.107 5.016
Belgium 0.557 -0.118 -0.294 6.140 4.330 5.160
France 0.577 -0.022 -0.207 5.896 4.781 5.131
Germany 0.558 -0.125 -0.248 5.956 4.590 5.130
Greece 0.307 -0.068 -0.202 3.206 1.956 2.400
Ireland 0.486 -0.392 -0.446 4.083 4.639 4.201
Italy 0.530 -0.002 -0.211 4.849 3.812 4.441
Netherlands 0.582 -0.166 -0.321 6.419 5.833 5.994
Portugal 0.429 -0.024 -0.139 4.593 3.911 4.186
Spain 0.528 -0.046 -0.187 5.048 4.191 4.327

Note: The comoment statistics between rmit and r
n
jt are computed as T

−1
∑T

t=1 z
m
i,tz

n
j,t, where

zi,t = (rit − µ̂i) /σ̂i and zj,t =
(
rjt − µ̂j

)
/σ̂j are respectively the standardized returns for the

US and the European markets.
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moments which is confirmed by the single channel tests CV22 and CK13 which are both

statistically significant. In contrast, the significance of COSKEW for Ireland shows

that contagion occurs through coskewness, which from the single channel coskewness

statistic CS12, arises from the effects of US equity returns on volatility in the Irish

equity market. Whilst there is limited evidence of contagion in higher order moments

during the subprime crisis, the results of the FR test suggest that contagion mainly

operated through the correlation channel with Austria, France, Germany, Italy, the

Netherlands and Spain showing a significant change in correlations at the 5% level,

and weaker evidence for Belgium where the test is only significant at the 10% level. Of

all of the Eurozone countries, Greece and Portugal interestingly appear to be the only

countries not to be affected by contagion (at the 5% level) during the subprime crisis.

The contagion test results for the GFC period are given in the second block of Table

5. A comparison of the subprime results (first block) and the GFC results (second

block) reveals a dramatic change in the number and types of channels of contagion

operating from the US to Europe. During the subprime crisis it was the correlation

channels that were the active channels, whereas during the GFC higher order moment

channels have become active as well. In particular, both joint tests, JOINT and

COSKEW , provide strong evidence of contagion transmitting via the third and fourth

order moment channels for nearly all Eurozone countries. The one exception is Italy

where the p-value on the COSKEW statistic suggests that it is not the coskewness

channels of contagion that are operating during the GFC, but rather it is fourth order

moment channels which from the single channel statistics are the result of volatility

spillovers (significant CV22 statistic) from the US to Eurozone equity markets and

cokurtosis (significant CK13 and CK31 statistics). The FR correlation test also shows

evidence of contagion from the US to some of the Eurozone countries. Interestingly,

this set of Eurozone countries does not include Greece, Ireland and Portugal who all

eventually experienced large contractions in their equity markets and economies in

general during the European debt crisis. The fact that the FR correlation based test

does not detect any evidence of contagion for these countries highlights the importance

of the higher order moment contagion tests which find strong evidence of contagion

during the GFC from the US for these countries.

The results of the contagion tests for the European debt crisis are given in the third

block of Table 5. The joint test JOINT finds very strong evidence of contagion from the

US to all European countries. Inspection of the COSKEW joint test results suggests
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Table 5:

Tests of contagion from the US to the Eurozone countries for selected crisis periods:
p-values reported with values less than 0.05, showing evidence of contagion at the 5%
level. All tests are computed relative to the noncrisis period of January 5, 2005 to

July 25, 2007.

Statistic Austr. Belg. Fr. Germ. Gr. Irel. Italy Neth. Port. Spain

Subprime crisis: July 26, 2007 to September 14, 2008
JOINT 0.589 0.444 0.386 0.305 0.760 0.094 0.026 0.421 0.213 0.129
COSKEW 0.196 0.576 0.360 0.424 0.813 0.039 0.157 0.906 0.377 0.292
CV22 0.484 0.133 0.145 0.072 0.255 0.310 0.044 0.138 0.287 0.030
CK31 0.817 0.098 0.247 0.388 0.973 0.125 0.341 0.114 0.116 0.252
CK13 0.625 0.236 0.203 0.089 0.794 0.296 0.005 0.987 0.089 0.158
CS21 0.170 0.448 0.595 0.301 0.744 0.101 0.398 0.701 0.369 0.244
CS12 0.113 0.312 0.174 0.257 0.533 0.012 0.061 0.978 0.203 0.156
FR 0.045 0.053 0.000 0.000 0.524 0.604 0.001 0.000 0.148 0.000

GFC: September 15, 2008 to December 31, 2009
JOINT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
COSKEW 0.095 0.002 0.009 0.027 0.003 0.000 0.209 0.000 0.021 0.017
CV22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CK31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CK13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CS21 0.048 0.013 0.013 0.028 0.043 0.000 0.090 0.000 0.036 0.023
CS12 0.104 0.001 0.006 0.017 0.001 0.000 0.242 0.000 0.012 0.010
FR 0.106 0.003 0.000 0.001 0.860 0.066 0.000 0.000 0.767 0.000

European debt crisis: January 1, 2010 to November 28, 2014
JOINT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
COSKEW 0.313 0.306 0.558 0.867 0.884 0.249 0.122 0.954 0.552 0.322
CV22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CK31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CK13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CS21 0.214 0.355 0.638 0.621 0.753 0.401 0.333 0.811 0.899 0.285
CS12 0.196 0.139 0.324 0.655 0.811 0.496 0.050 0.961 0.381 0.135
FR 0.000 0.000 0.000 0.000 0.081 0.000 0.002 0.000 0.000 0.040
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that these higher order moment effects are solely the result of volatility spillovers or

cokurtosis, which is confirmed by the single channel contagion statistics CV22, CK13

and CK31. The Forbes-Rigobon statistic FR also finds significant evidence of contagion

from the US through the correlation channel for all countries with one exception at the

5% level. The exception interestingly is Greece with a p-value of 0.081. This weaker

evidence of contagion through the correlation channel is in stark contrast to the higher

order moment results through covolatility and cokurtosis which are all found to be

statistically important for Greece. If only traditional correlation measures of contagion

are the focus, contagion to Greece would remain undetected.

4.2 Regional Contagion

The results of testing for regional contagion from Germany to the other countries

within the Eurozone are presented in Table 6 for the three financial crises. The joint

test JOINT shows strong evidence of higher order moment contagion operating from

Germany to all of the other Eurozone countries, which is also present during all three

crisis periods. Upon closer inspection of the p-values associated with the joint and

single channel tests, it is the fourth order comoments that tend to be the more pervasive

channels operating.

The Forbes-Rigobon FR statistic also detects strong evidence of regional contagion

through the correlation channel for nearly all countries during the subprime crisis and

the GFC, but surprisingly the effects are limited during the European debt crisis.

During this latter period it is Greece, Italy and Spain (at the 5% level) that are

affected by Germany through the correlation channel, with weaker links for France and

the Netherlands (at the 10% level).

5 Conclusions

This paper provided a new class of joint tests of contagion that explicitly allowed

for simultaneous contagious linkages connecting asset markets through higher order

comoments. The tests were designed to have power where contagion operated through

coskewness, cokurtosis and covolatility. The finite sample properties of the proposed

tests were investigated using a range of Monte Carlo experiments and compared to

existing tests of contagion which primarily focussed on single comoment channels.

The new tests were applied to identifying contagion in Eurozone equity markets

24



Table 6:

Tests of contagion from Germany to the Eurozone countries for selected crisis
periods: p-values reported with values less than 0.05, showing evidence of contagion
at the 5% level. All tests are computed relative to the noncrisis period of January 5,

2005 to July 25, 2007.

Statistic Austr. Belg. Fr. Gr. Irel. Italy Neth. Port. Spain

Subprime crisis: July 26, 2007 to September 14, 2008
JOINT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
COSKEW 0.027 0.012 0.007 0.278 0.027 0.020 0.003 0.014 0.000
CV22 0.000 0.027 0.924 0.000 0.000 0.048 0.086 0.000 0.098
CK31 0.000 0.000 0.006 0.000 0.000 0.173 0.001 0.339 0.036
CK13 0.000 0.747 0.050 0.001 0.004 0.001 0.543 0.000 0.000
CS21 0.009 0.270 0.241 0.408 0.026 0.237 0.658 0.828 0.391
CS12 0.031 0.736 0.936 0.829 0.333 0.857 0.298 0.115 0.240
FR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000

GFC: September 15, 2008 to December 31, 2009
JOINT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
COSKEW 0.337 0.032 0.099 0.089 0.000 0.328 0.000 0.020 0.791
CV22 0.000 0.075 0.234 0.000 0.000 0.016 0.005 0.000 0.334
CK31 0.000 0.155 0.110 0.000 0.652 0.553 0.462 0.002 0.172
CK13 0.000 0.000 0.014 0.453 0.000 0.001 0.000 0.000 0.016
CS21 0.187 0.550 0.595 0.838 0.090 0.995 0.177 0.166 0.783
CS12 0.198 0.076 0.178 0.103 0.000 0.469 0.003 0.011 0.941
FR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.000

European debt crisis: January 1, 2010 to November 28, 2014
JOINT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
COSKEW 0.001 0.037 0.088 0.125 0.087 0.033 0.028 0.497 0.078
CV22 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CK31 0.183 0.004 0.000 0.002 0.000 0.000 0.000 0.000 0.000
CK13 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CS21 0.000 0.124 0.071 0.182 0.046 0.039 0.211 0.576 0.033
CS12 0.000 0.460 0.186 0.066 0.175 0.201 0.703 0.923 0.068
FR 0.640 0.979 0.087 0.000 0.469 0.000 0.081 0.962 0.000
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during the three financial crises, beginning with the subprime crisis, the GFC and

more recently the European debt crisis. Both global and regional contagious linkages

were tested. Using daily data on equity returns from 2005 to 2014, the empirical

results showed significant higher order comoment contagion operating throughout all

three crisis periods. For some countries the traditional measure of contagion based on

correlations failed to detect evidence of contagion during some of the financial crises

when contagion operated through the higher order moment channels.
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A Derivations of Test Statistics

This appendix provides the derivations of the joint tests of contagion. Both statistics
are based on the following bivariate generalized normal distribution

f(rit, rjt) = exp
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where η is the normalizing constant
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Let the exponent of (26) be defined as

ht = −1
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A.1 Information Matrix

Under the null hypothesis of bivariate normality the following elements of the infor-
mation matrix are used in the derivations of the joint tests of contagion
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− E

[
∂ht
∂ρ

]
E

[
∂ht
∂θ7

]
= 3,

I5,10,t = E

[
∂ht
∂ρ

∂ht
∂θ8

]
− E

[
∂ht
∂ρ

]
E

[
∂ht
∂θ8

]
= 4ρ,

I6,6,t = E

[(
∂ht
∂θ4

)2
]
− E

[
∂ht
∂θ4

]
E

[
∂ht
∂θ4

]
= 3 + 12ρ2,

I6,7,t = E

[
∂ht
∂θ4

∂ht
∂θ5

]
− E

[
∂ht
∂θ4

]
E

[
∂ht
∂θ5

]
= 6ρ3 + 9ρ,

I6,8,t = E

[
∂ht
∂θ4

∂ht
∂θ6

]
− E

[
∂ht
∂θ4

]
E

[
∂ht
∂θ6

]
= 0,

I6,9,t = E

[
∂ht
∂θ4

∂ht
∂θ7

]
− E

[
∂ht
∂θ4

]
E

[
∂ht
∂θ7

]
= 0,

I6,10,t = E

[
∂ht
∂θ4

∂ht
∂θ8

]
− E

[
∂ht
∂θ4

]
E

[
∂ht
∂θ8

]
= 0,
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I7,7,t = E

[(
∂ht
∂θ5

)2
]
− E

[
∂ht
∂θ5

]
E

[
∂ht
∂θ5

]
= 3 + 12ρ2,

I7,8,t = E

[
∂ht
∂θ5

∂ht
∂θ6

]
− E

[
∂ht
∂θ5

]
E

[
∂ht
∂θ6

]
= 0,

I7,9,t = E

[
∂ht
∂θ5

∂ht
∂θ7

]
− E

[
∂ht
∂θ5

]
E

[
∂ht
∂θ7

]
= 0,

I7,10,t = E

[
∂ht
∂θ5

∂ht
∂θ8

]
− E

[
∂ht
∂θ5

]
E

[
∂ht
∂θ8

]
= 0,

I8,8,t = E

[(
∂ht
∂θ6

)2
]
− E

[
∂ht
∂θ6

]
E

[
∂ht
∂θ6

]
= 15 + 81ρ2,

I8,9,t = E

[
∂ht
∂θ6

∂ht
∂θ7

]
− E

[
∂ht
∂θ6

]
E

[
∂ht
∂θ7

]
= 24ρ4 + 63ρ2 + 9,

I8,10,t = E

[
∂ht
∂θ6

∂ht
∂θ8

]
− E

[
∂ht
∂θ6

]
E

[
∂ht
∂θ8

]
= 54ρ3 + 42ρ,

I9,9,t = E

[(
∂ht
∂θ7

)2
]
− E

[
∂ht
∂θ7

]
E

[
∂ht
∂θ7

]
= 15 + 81ρ2,

I9,10,t = E

[
∂ht
∂θ7

∂ht
∂θ8

]
− E

[
∂ht
∂θ7

]
E

[
∂ht
∂θ8

]
= 54ρ3 + 42ρ,

I10,10,t = E

[(
∂ht
∂θ8

)2
]
− E

[
∂ht
∂θ8

]
E

[
∂ht
∂θ8

]
= 8 + 68ρ2 + 20ρ4.

A.2 Joint Contagion Test

From (26) and (27) the joint test of contagion (JOINT ) through covolatility, cokurtosis
and coskewness is based on the null hypothesis

H0 : θ4 = θ5 = θ6 = θ7 = θ8 = 0. (29)

Under the null hypothesis of bivariate normality, the maximum likelihood estimators
of the unknown parameters are simply

µ̂i =
1

T

T∑
t=1

rit, µ̂j =
1

T

T∑
t=1

rjt, σ̂2
i =

1

T

T∑
t=1

(rit − µ̂i)
2 , σ̂2

j =
1

T

T∑
t=1

(
rjt − µ̂j

)2
,

(30)
and for the the correlation parameter

ρ̂ =
1

T

T∑
t=1

(
rit − µi
σi

)(
rjt − µj
σj

)
.
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Let the parameters of (26) be Θ = {µi, µj, σ2
i , σ

2
j , ρ, θ4, θ5, θ6, θ7, θ8}. The information

matrix under the null hypothesis (H0 : θ4 = θ5 = θ6 = θ7 = θ8 = 0) is

I (Θ) =

(
E

[
∂h

∂Θ

∂h

∂Θ′

]∣∣∣∣
θj=0

− E

[
∂h

∂Θ

]∣∣∣∣
θj=0

E

[
∂h

∂Θ′

]∣∣∣∣
θj=0

)
,∀j = 4, . . . , 8,

=

(
1

1− ρ2

)



1
σ2i

−ρ
σiσj

0 0 0
−ρ
σiσj

1
σ2j

0 0 0

0 0 2−ρ2
4σ4i

−ρ2
4σ2i σ

2
j

−ρ
2σ2i

0 0 −ρ2
4σ2i σ

2
j

2−ρ2
4σ4j

−ρ
2σ2j

0 0 −ρ
2σ2i

−ρ
2σ2j

1+ρ2

1−ρ2

(1−ρ2)
σi

2(1−ρ2)ρ
σj

0 0 0
2(1−ρ2)ρ

σi

(1−ρ2)
σj

0 0 0

0 0
3ρ(1−ρ2)

2σ2i

9ρ(1−ρ2)
2σ2j

3
(
1− ρ2

)
0 0

9ρ(1−ρ2)
2σ2i

3ρ(1−ρ2)
2σ2j

3
(
1− ρ2

)
0 0

(2ρ2+1)(1−ρ2)
σ2i

(2ρ2+1)(1−ρ2)
σ2j

4ρ
(
1− ρ2

)
(1−ρ2)
σi

2ρ(1−ρ2)
σi

0
2ρ(1−ρ2)

σj

(1−ρ2)
σj

0

0 0
3ρ(1−ρ2)

2σ2i

0 0
9ρ(1−ρ2)

2σ2j

0 0 3
(
1− ρ2

)(
3 + 12ρ2

) (
1− ρ2

) (
9ρ+ 6ρ3

) (
1− ρ2

)
0(

9ρ+ 6ρ3
) (

1− ρ2
) (

3 + 12ρ2
) (

1− ρ2
)

0
0 0

(
15 + 81ρ2

) (
1− ρ2

)
0 0

(
24ρ4+63ρ2+9

) (
1− ρ2

)
0 0

(
54ρ3+42ρ

) (
1− ρ2

)
0 0
0 0

9ρ(1−ρ2)
2σ2i

(2ρ2+1)(1−ρ2)
σ2i

3ρ(1−ρ2)
2σ2j

(2ρ2+1)(1−ρ2)
σ2j

3
(
1− ρ2

)
4ρ
(
1− ρ2

)
0 0
0 0(

24ρ4+63ρ2 + 9
) (

1− ρ2
) (

54ρ3+42ρ
) (

1− ρ2
)(

15 + 81ρ2
) (

1− ρ2
) (

54ρ3+42ρ
) (

1− ρ2
)(

54ρ3+42ρ
) (

1− ρ2
) (

8 + 68ρ2+20ρ4
) (

1− ρ2
)



−1

, (31)
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by using the elements of the information matrix given in Appendix A.1. Replacing the
unknown population parameters by consistent estimators under the null hypothesis,
the inverse asymptotic information matrix is

I−1(Θ̂) =
(
1− ρ̂2

)



1
σ̂2i

−ρ̂
σ̂iσ̂j

0 0 0
−ρ̂
σ̂iσ̂j

1
σ̂2j

0 0 0

0 0 2−ρ̂2
4σ̂4i

−ρ̂2
4σ̂2i σ̂

2
j

−ρ̂
2σ̂2i

0 0 −ρ̂2
4σ̂2i σ̂

2
j

2−ρ̂2
4σ̂4j

−ρ̂
2σ̂2j

0 0 −ρ̂
2σ̂2i

−ρ̂
2σ̂2j

1+ρ̂2

1−ρ̂2

(1−ρ̂2)
σ̂i

2(1−ρ̂2)ρ̂
σ̂j

0 0 0
2(1−ρ̂2)ρ̂

σ̂i

(1−ρ̂2)
σ̂j

0 0 0

0 0
3ρ̂(1−ρ̂2)

2σ̂2i

9ρ̂(1−ρ̂2)
2σ̂2j

3
(
1−ρ̂2

)
0 0

9ρ̂(1−ρ̂2)
2σ̂2i

3ρ̂(1−ρ̂2)
2σ̂2j

3
(
1−ρ̂2

)
0 0

(2ρ̂2+1)(1−ρ̂2)
σ̂2i

(2ρ̂2+1)(1−ρ̂2)
σ̂2j

4ρ̂
(
1−ρ̂2

)
(1−ρ̂2)
σ̂i

2ρ̂(1−ρ̂2)
σ̂i

0
2ρ̂(1−ρ̂2)

σ̂j

(1−ρ̂2)
σ̂j

0

0 0
3ρ̂(1−ρ̂2)

2σ̂2i

0 0
9ρ̂(1−ρ̂2)

2σ̂2j

0 0 3
(
1−ρ̂2

)(
3 + 12ρ̂2

) (
1−ρ̂2

) (
9ρ̂+ 6ρ̂3

) (
1−ρ̂2

)
0(

9ρ̂+ 6ρ̂3
) (

1−ρ̂2
) (

3 + 12ρ̂2
) (

1−ρ̂2
)

0

0 0
(
15 + 81ρ̂2

) (
1−ρ̂2

)
0 0

(
24ρ̂4 + 63ρ̂2+9

) (
1−ρ̂2

)
0 0

(
54ρ̂3+42ρ̂

) (
1−ρ̂2

)
0 0
0 0

9ρ̂(1−ρ̂2)
2σ̂2i

(2ρ̂2+1)(1−ρ̂2)
σ̂2i

3ρ̂(1−ρ̂2)
2σ̂2j

(2ρ̂2+1)(1−ρ̂2)
σ̂2j

3
(
1−ρ̂2

)
4ρ̂
(
1−ρ̂2

)
0 0
0 0(

24ρ̂4 + 63ρ̂2+9
) (

1−ρ̂2
) (

54ρ̂3+42ρ̂
) (

1−ρ̂2
)(

15 + 81ρ̂2
) (

1−ρ̂2
) (

54ρ̂3+42ρ̂
) (

1−ρ̂2
)(

54ρ̂3+42ρ̂
) (

1−ρ̂2
) (

8 + 68ρ̂2+20ρ̂4
) (

1−ρ̂2
)



−1

. (32)
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Evaluating the gradients for θ4, θ5, θ6, θ7 and θ8 under the null hypothesis gives

∂ lnL(θ)

∂θ4

=
1

T

T∑
t=1

(
∂ht
∂θ4

)
−
(
∂ηt
∂θ4

)
=

1

T

T∑
t=1

(
rit − µi
σi

)1(rjt − µj
σj

)2

−
[
E

(
∂ht
∂θ4

)]
=

1

T

T∑
t=1

(
rit − µi
σi

)1(rjt − µj
σj

)2

− (0)

=
1

T

T∑
t=1

(
rit − µi
σi

)1(rjt − µj
σj

)2

,

∂ lnL(θ)

∂θ5

=
1

T

T∑
t=1

∂ht
∂θ5

− ∂ηt
∂θ5

=
1

T

T∑
t=1

(
rit − µi
σi

)2(rjt − µj
σj

)1

,

∂ lnL(θ)

∂θ6

=
1

T

T∑
t=1

∂ht
∂θ6

− ∂ηt
∂θ6

=
1

T

T∑
t=1

(
rit − µi
σi

)1(rjt − µj
σj

)3

− 3ρ,

∂ lnL(θ)

∂θ7

=
1

T

T∑
t=1

∂ht
∂θ7

− ∂ηt
∂θ7

=
1

T

T∑
t=1

(
rit − µi
σi

)3(rjt − µj
σj

)1

− 3ρ,

∂ lnL(θ)

∂θ8

=
1

T

T∑
t=1

∂ht
∂θ8

− ∂ηt
∂θ8

=
1

T

T∑
t=1

(
rit − µi
σi

)2(rjt − µj
σj

)2

−
(
1 + 2ρ2

)
.

The score function under H0 is given by

G(Θ̂) =
∂ lnL

∂Θ

∣∣∣∣
θj=0

, ∀j = 4, . . . , 8,

=
[

0 0 0 0 0

1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)1(rjt − µ̂j
σ̂j

)2
1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)2(rjt − µ̂j
σ̂j

)1

1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)1(rjt − µ̂j
σ̂j

)3

− 3ρ̂

1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)3(rjt − µ̂j
σ̂j

)1

− 3ρ̂

1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)2(rjt − µ̂j
σ̂j

)2

−
(
1 + 2ρ̂2

) ]′
. (33)

The general form of the Lagrange multiplier statistic is given by

LM = TG(Θ̂)′I(Θ̂)−1G(Θ̂), (34)

Substituting (33) and (32) into (34) gives the following LM statistic
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LM =


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1( rjt−µ̂j
σ̂j

)2
√√√√ 2(1−ρ̂6)
T(2ρ̂2+1)


2

+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)2 ( rjt−µ̂j
σ̂j

)1

√
2(1−ρ̂6)
T(2ρ̂2+1)


2

−


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1 ( rjt−µ̂j
σ̂j

)2

√
1− ρ̂6

T
(
ρ̂3 + 2ρ̂

)




1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)2 ( rjt−µ̂j
σ̂j

)1

√
1−ρ̂6

T(ρ̂3+2ρ̂)



+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1 ( rjt−µ̂j
σ̂j

)3

− 3ρ̂√
6(ρ̂10−ρ̂8−ρ̂2+1)
T(3ρ̂4+2ρ̂2+1)


2

+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)3 ( rjt−µ̂j
σ̂j

)1

− 3ρ̂√
6(ρ̂10−ρ̂8−ρ̂2+1)
T(3ρ̂4+2ρ̂2+1)


2

+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)2( rjt−µ̂j
σ̂j

)2
−(1+2ρ̂2)√√√√4(ρ̂2−1)

2
(ρ̂4+1)

T(ρ̂4+6ρ̂2+1)


2

+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1( rjt−µ̂j
σ̂j

)3
−3ρ̂√√√√3(ρ̂10−ρ̂8−ρ̂2+1)

T(ρ̂6+2ρ̂4+3ρ̂2)




1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)3 ( rjt−µ̂j
σ̂j

)1

− 3ρ̂√
3(ρ̂10−ρ̂8−ρ̂2+1)
T(ρ̂6+2ρ̂4+3ρ̂2)



−




1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1 ( rjt−µ̂j
σ̂j

)3

− 3ρ̂√
(ρ̂2−1)

2
(ρ̂4+1)

T(ρ̂3+ρ̂)

+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)3( rjt−µ̂j
σ̂j

)1
−3ρ̂√√√√(ρ̂2−1)

2
(ρ̂4+1)

T(ρ̂3+ρ̂)




×


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)2( rjt−µ̂j
σ̂j

)2
−(1+2ρ̂2)√√√√(ρ̂2−1)

2
(ρ̂4+1)

T(ρ̂3+ρ̂)

 .

(35)

The test statistic in (35) provides a general test of higher order moments for a
particular sample period T. In the case of testing for contagion the approach is to
follow Fry, Martin and Tang (2010) and construct a test statistic where the individual
terms in (35) are replaced by the difference between each term evaluated using crisis
data (y) and noncrisis data (x). As these expressions are based on estimating the
correlation parameter ρ, this parameter is evaluated at the Forbes-Rigobon adjusted
correlation statistic defined in (15) when the expression is evaluated using crisis data
and by the unadjusted correlation coeffi cient when using noncrisis data. Constructing
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the joint statistic this way produces the statistic given in equation (14).

A.3 Joint Coskewness Test

A joint test of coskewness contagion is based on the null hypothesis

H0 : θ4 = θ5 = 0, (36)

in (26) and (27). Using the results of Appendix A.1 and replacing the unknown pop-
ulation parameters by consistent estimators under the null hypothesis, the inverse
asymptotic information matrix under the null hypothesis (H0 : θ4 = θ5 = 0) is

I−1(Θ̂) =
(
1− ρ̂2

)



1
σ̂2i

−ρ̂
σ̂iσ̂j

0 0 0
−ρ̂
σ̂iσ̂j

1
σ̂2j

0 0 0

0 0 2−ρ̂2
4σ̂4i

−ρ̂2
4σ̂2i σ̂

2
j

−ρ̂
2σ̂2i

0 0 −ρ̂2
4σ̂2i σ̂

2
j

2−ρ̂2
4σ̂4j

−ρ̂
2σ̂2j

0 0 −ρ̂
2σ̂2i

−ρ̂
2σ̂2j

1+ρ̂2

1−ρ̂2

(1−ρ̂2)
σ̂i

2(1−ρ̂2)ρ̂
σ̂j

0 0 0
2(1−ρ̂2)ρ̂

σ̂i

(1−ρ̂2)
σ̂j

0 0 0

(1−ρ̂2)
σ̂i

2ρ̂(1−ρ̂2)
σ̂i

2ρ̂(1−ρ̂2)
σ̂j

(1−ρ̂2)
σ̂j

0 0
0 0
0 0(

3 + 12ρ̂2
) (

1−ρ̂2
) (

9ρ̂+ 6ρ̂3
) (

1−ρ̂2
)(

9ρ̂+6ρ̂3
) (

1−ρ̂2
) (

3 + 12ρ̂2
) (

1−ρ̂2
)



−1

. (37)

The score function under H0 is given as

G(Θ̂) =
∂ lnL

∂Θ

∣∣∣∣
θ4=θ5=0

,

=
[

0 0 0 0 0

1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)1(rjt − µ̂j
σ̂j

)2

1

T

T∑
t=1

(
rit − µ̂i
σ̂i

)2(rjt − µ̂j
σ̂j

)1
]′
. (38)
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Substituting (37) and (38) into the Lagrange multiplier test in (34) gives

LM =


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1 ( rjt−µ̂j
σ̂j

)2

√
(2−2ρ̂6)
T(2ρ̂2+1)


2

+


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)2 ( rjt−µ̂j
σ̂j

)1

√
(2−2ρ̂6)
T(2ρ̂2+1)


2

−


1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)1 ( rjt−µ̂j
σ̂j

)2

√
(1−ρ̂6)
T(ρ̂3+2ρ̂)




1
T

T∑
t=1

(
rit−µ̂i
σ̂i

)2 ( rjt−µ̂j
σ̂j

)1

√
(1−ρ̂6)
T(ρ̂3+2ρ̂)

 . (39)

The test statistic in (39) provides a general test of coskewness for a particular sample
period T. Following the approach adopted in Section A.2 a joint test of contagion based
on coskewness is constructed by replacing each term in (39) by the difference between
the term evaluated using crisis data (y) and noncrisis data (x). Again the correlation
parameter is evaluated using the adjusted statistic in (15) for the crisis data and the
standard unadjusted correlation coeffi cient using noncrisis data, which, in turn, yields
the joint coskewness tests of contagion given in equation (16).
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