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1 Introduction

Understanding the interdependence of asset returns is important in the construction of

optimal well diversi�ed portfolios (Markowitz (1959), Grubel (1968), Levy and Sarnat

(1970)), risk management using multiple asset VaR measures (Jorion (1997), Basak and

Shapiro (2001)) and pricing exchange options (Margrabe (1978)). Earlier approaches

for measuring interdependence are based on bivariate correlations (Grubel (1968), Levy

and Sarnat (1970), Grubel and Fadner (1971), King and Wadhwhani (1990)), spectral

methods (Granger and Morgenstern (1970), Hilliard (1979)), then extended to multi-

variate dynamic models including vector autoregressions (Eun and Shim (1989)), vector

error correction models (Arshanapalli and Doukas (1993)) and multivariate volatility

(Wahab (2012), MacDonald, Sogiakas and Tsopanakis (2017)).

Latent factor models are also widely used for decomposing the determinants of

asset return interdependence in terms of common and idiosyncratic factors beginning

with Lessard (1974) and Solnik (1974), and more recently by Bekaert, Hodrick and

Zhang (2009). Extensions to dynamic factors are by Haldane and Hall (1991) where

the decomposition is in terms of regional and global factors and how this decompo-

sition can change over time, and the connectedness models of Diebold and Yilmaz

(2009,2014). In models of �nancial integration the decomposition ranges the spectrum

from segmented markets where local and global asset markets operate independently,

to the extreme case where asset markets are fully integrated (see Bekaert and Harvey

(1995) and the applications of this model by Bekaert and Harvey (1997), Baele (2005),

Hardouvelis, Malliaropulos and Priestley (2006,2007), Wang and Shih (2013), Abad,

Chuliá and Gómez-Puig (2014), de Nicolò and Juvenal (2014) and �imovíc, Tkalec,

Vizek and Lee (2016)). Further extensions to modelling the joint movements of as-

set returns during �nancial crises and the identi�cation of contagion include Bekaert

and Harvey (2003), Dungey, Fry, González-Hermosillo and Martin (2005,2010), and

Bekaert, Ehrmann, Fratzscher and Mehl (2014). In particular, Forbes and Rigobon

(2002) argue that increases in asset return comovements during �nancial crises is due

to changes in interdependence and not contagion.

A common theme in most of this previous work is the focus on measuring asset

return comovements through the �rst and second order moments. However, higher

order comoments including coskewness, cokurtosis and covolatility are also important in
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modeling asset returns in general (Harvey and Siddique (2000), Christo¤ersen, Errunza,

Jacobs and Langlois (2012), Kostakis, Muhammadb and Siganos (2012)), options (Fry-

McKibbin, Martin and Tang (2014)), and contagion (Fry, Martin and Tang (2010), Fry-

McKibbin and Hsiao (2017)). These higher order comoments allow for interactions

between expected returns and volatility, between expected returns and skewness, as

well as between the cross-volatilities of di¤erent asset markets. Tail correlations using

copulas provide another approach to gauge the strength of joint extreme events (Huang,

Liu, Rhee and Wub (2012)).

To capture the role of higher order comoments in the joint determination of asset

markets the approach consists of specifying a �exible class of multivariate distributions

based on the generalized exponential family ( Lye and Martin (1993) and Fry, Martin

and Tang (2010)) to construct a measure of interdependence using entropy theory. The

proposed modelling framework has the dual advantage of not requiring the speci�ca-

tion of a particular parametric model, or the need to choose a particular metric to

measure the strength of alternative channels linking asset returns. A further advan-

tage is that a new diagnostic test of independence is proposed which explicitly takes

into account the role of higher order comoments. Maasoumi and Racine (2002) and

Granger, Maasoumi and Racine (2004) also use entropy theory to measure interdepen-

dence, but choose a di¤erent metric while adopting a fully nonparametric speci�cation

of the underlying distribution. Their test statistic is computed using a nonparametric

Gaussian kernel (see also Racine and Maasoumi (2007), Maasoumi and Racine (2008),

Giannerine, Maasoumi and Dagum (2015)). The advantage of the present framework

over these previous approaches is that the speci�cation of the multivariate generalized

normal distribution makes it possible to decompose asset comovements in terms of their

various comoments. The generalized exponential family of distributions is also shown

to represent a natural theoretical choice as it is shown to have maximum entropy given

a set of higher order comoments.

To demonstrate the �exibility of the proposed measure of interdependence two

simulation experiments are performed based on the Bekaert-Harvey (1995) model of �-

nancial integration and the Solnik-Roulet (2000) multiple asset model of cross-sectional

interdependence. For both models the entropy interdependence measure successfully

tracks the comovements in asset returns over time regardless of the type of data gen-
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erating mechanism speci�ed. The entropy measure is also applied to studying equity

market interdependence of euro zone countries both globally and within Europe, from

1990 to 2017. The empirical results provide evidence that European equity markets

operated independently of global asset markets prior to the adoption of the euro, but

progressively became more interdependent over time with the level of interdependence

peaking during the global �nancial crisis. The empirical results also show a fall in

interdependence during the post-GFC period largely as a result of Greece, Ireland,

Portugal and Spain becoming independent of global equity markets.

The rest of the paper proceeds as follows. Section 2 compares the statistical prop-

erties of equity return comovements in the euro zone which are used to motivate the

entropy interdependence measure in Section 3. The properties of this measure are in-

vestigated in Section 4 using a range of simulation experiments, which is then applied

in Section 5 to euro zone equity markets. Concluding comments are given in Section 6

with derivations and additional simulation results presented in the Appendices.

2 Equity Comovements

To motivate the use of the entropy measure of interdependence, Figures 1 and 2 provide

scatter plots of the log-returns of equities between euro zone countries and the U.S..

The euro zone countries consist of Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain. With the exception

of Greece, these countries are the original adopters of the euro on January 1, 1999,

with Greece adopting the euro shortly after in 2001.1

Equity returns are computed as the change in the log-prices with all series denom-

inated in US dollars. All equity returns are computed on a weekly basis to circumvent

non-synchronous trading issues across asset markets and expressed as a percentage.

The sample period ranges from January 12, 1990 and ends May 5, 2017, a total of

T = 1427 observations. The scatter plots are presented for four separate periods: the

pre-euro period (January 1990 to December 1998); the date of the adoption of the euro

and prior to the GFC (January 1999 to December 2007); the GFC period (January

2008 to December 2009); and the post-GFC period (January 2010 to May 2017).2 In

1As Cyprus, Estonia, Latvia, Lithuania, Malta, Slovakia and Slovenia adopted the euro after 2007,
they are excluded from the empirical analysis because of the relatively short sample period.

2This choice of sub-sample periods is based on a combination of institutional features and events
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the case of Belgium, Ireland, Italy, Luxembourg and Portugal, data on equity prices

are not available for the �rst sub-period.

An inspection of the scatter plots in Figure 1 (Austria, Belgium, Finland, France,

Germany, Greece) and Figure 2 (Ireland, Italy, Luxembourg, the Netherlands, Portu-

gal, Spain) reveals distinct changes in the interrelationships between equity returns in

the euro zone and the U.S. across the four periods. For some of the euro zone countries

there is a change in the strength of the comovements with the U.S. compared to the

pre-euro period, with the scatter plots in the second period revealing a tighter scatter

especially for Finland, France and Germany. The e¤ects of the GFC are highlighted

by the much tighter scatter plots between U.S. and euro zone equity markets, suggest-

ing even greater global interdependence between European and U.S. equities. For the

post-GFC period, as given by the �nal columns of Figures 1 and 2, there appears to be

a reduction in the strength of the comovements between the U.S. and euro zone equity

markets with all scatter plots now exhibiting greater dispersion compared to the GFC

period.

3 Approach

This section provides the details of constructing a general measure of �nancial interde-

pendence using entropy theory. An important feature of the approach is that various

channels linking asset markets are allowed for including not only second order mo-

ments, but also higher order moments such as coskewness, cokurtosis and covolatility.

In turn, it is possible to decompose the level of interdependence into these various

components and hence identify the size and the direction of alternative sub-measures

of interdependence on the overall level of interdependence of asset markets.

3.1 Measuring Interdependence

The main message arising from the bivariate scatter plots of equity returns in Fig-

ures 1 and 2 is that it is the joint distribution that determines the strength of the

in time, as well as econometric methods based on endogenous structural break tests. The structural
break tests adopted represent a generalization of the Diebold and Chen (1996) test to a multivariate
VAR setting. A likelihood ratio test is used with standard errors based on a Wild paired bootstrap
to correct for heteroskedasticity and to preserve the contemporaneous correlation structure in equity
returns across asset markets.
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Figure 1: Scatter plots of weekly percentage equity returns between selected euro zone
countries and the U.S. over four periods of the pre-euro (January 5, 1990 to December
25, 1998), euro (January 1, 1999 to December 28, 2007), the GFC (January 4, 2008
to December 25, 2009), and post-GFC (January 1, 2010 to May 5, 2017) periods
respectively. The solid line is the line of best �t.
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Figure 2: Scatter plots of weekly percentage equity returns between selected euro zone
countries and the U.S. over four periods of the pre-euro (January 5, 1990 to December
25, 1998), euro (January 1, 1999 to December 28, 2007), the GFC (January 4, 2008
to December 25, 2009), and post-GFC (January 1, 2010 to May 5, 2017) periods
respectively. The solid line is the line of best �t.
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interaction amongst asset markets. In the extreme case of independence where asset

markets are segmented, shocks in one market have no clear predictable e¤ects on other

asset markets. In the case where asset markets are connected the joint distribution

is characterized by regions on the support where joint movements in returns are more

likely to occur resulting in the distribution exhibiting higher mass in some regions and

lower mass in others. As more and more of the mass of the joint distribution becomes

located in a smaller and smaller region of the support of the distribution, asset markets

become increasingly more interdependent.

To formalize the interdependence measure, let r1 and r2 represent the returns on two

asset markets with joint probability distribution f (r1; r2; �) with unknown parameter

vector �: The aim is to choose a measure which increases as asset markets become more

dependent and decreases as asset markets become more independent. An appropriate

function from information theory is the natural logarithm of the joint probability, log f:

For regions of the support of the distribution where there is higher probability of r1 and

r2 interacting with each other log f increases, that is it becomes less negative. For those

regions where joint events between r1 and r2 are less likely the value of the function

decreases, that is it becomes more negative. In the extreme case of independence log f

approaches �1: To construct an overall measure of interdependence the approach is
to weight log f according to the probability that each event occurs. For a continuous

joint distribution a formal measure of interdependence is the expected value of the

natural logarithm of the distribution

	 = E [log f (r1; r2; �)] =

Z Z
log (f (r1; r2; �)) f (r1; r2; �) dr1dr2: (1)

In the extreme case of market segmentation where the joint probability is f (r1; r2; �) =

0, then log(f (r1; r2; �))f (r1; r2; �) = 0 is treated as zero. The statistic 	 also repre-

sents the negative of the entropy of a distribution which provides a measure of uncer-

tainty. Smaller values of 	 represent greater uncertainty as to how returns in di¤erent

markets respond to shocks, and thus correspond to higher entropy. In the extreme case

of independence the asset markets are segmented with 	 reaching a minimum corre-

sponding to maximum entropy. For increasing values of 	 there is greater certainty

between the connectedness of asset markets resulting in lower entropy.

To derive a general relationship between the interdependence measure in (1) and

higher order comoments, a natural and convenient choice is a subordinate distribution
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from the exponential family (Cobb, Koppstein, and Chen (1983), Lye and Martin

(1993), Fry, Martin and Tang (2010)) with the general form

f(r1; r2; �) = exp (h� �) ; (2)

where h = h (r1; r2; �) and � = � (�) is a normalizing constant de�ned as

� = log

Z Z
exp (h) dr1dr2; (3)

which ensures the probability density integrates to unity,
R R

f (r1; r2; �) dr1dr2 = 1.

Upon substituting (2) in (1) yields an alternative form of the interdependence measure

	 = E [h� �] = E [h]� �: (4)

In choosing the joint distribution of the asset returns and hence an expression for h

in (4), the approach is to use the generalized exponential family of distributions which

nests a broad range of distributions commonly adopted in empirical �nance. In the

case where the bivariate generalized normal distribution is chosen as the subordinate

distribution the form of h is

h = �1
2

�
1

1� �2

� �
r1 � �1
�1

�2
+

�
r2 � �2
�2

�2
� 2�

�
r1 � �1
�1

��
r2 � �2
�2

�!
+�1

�
r1 � �1
�1

�1�
r2 � �2
�2

�2
+ �2

�
r1 � �1
�1

�2�
r2 � �2
�2

�1
+�3

�
r1 � �1
�1

�1�
r2 � �2
�2

�3
+ �4

�
r1 � �1
�1

�3�
r2 � �2
�2

�1
+�5

�
r1 � �1
�1

�2�
r2 � �2
�2

�2
;

(5)

where f�1; �1; �2; �2; �; �1; �2; �3; �4; �5g are the unknown parameters. The �rst part of
the expression represents the bivariate normal distribution which occurs by imposing

the restrictions �1 = �2 = �3 = �4 = �5 = 0; where interdependence between r1

and r2 is solely controlled by the correlation parameter �: The role of higher order

comoments is captured by relaxing these restrictions, with coskewness controlled by

the parameters �1 and �2; cokurtosis by the parameters �3 and �4; and covolatility by

the parameter �5: It is shown in Appendix A that this choice of h results in f(r1; r2; �)

in (2) having the optimality property that it maximizes entropy subject to achieving

the higher order comoments of coskewness, cokurtosis and covolatility, as well as the

second order comoment of correlation.
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Using (5) in (4) gives

	 = �1
2

�
1

1� �2

� 
E

"�
r1 � �1
�1

�2#
+ E

"�
r2 � �2
�2

�2#

�2�E
��
r1 � �1
�1

��
r2 � �2
�2

���
+�1E

"�
r1 � �1
�1

�1�
r2 � �2
�2

�2#
+ �2E

"�
r1 � �1
�1

�2�
r2 � �2
�2

�1#
(6)

+�3E

"�
r1 � �1
�1

�1�
r2 � �2
�2

�3#
+ �4E

"�
r1 � �1
�1

�3�
r2 � �2
�2

�1#

+�5E

"�
r1 � �1
�1

�2�
r2 � �2
�2

�2#
� �:

De�ningE
�
((r1 � �1) =�1)

2� = E �((r2 � �2) =�2)2� = 1 andE [(r1 � �1) (r2 � �2) =�1�2] =
�; the �rst three terms of (6) reduce to

�1
2

�
1

1� �2

� 
E

"�
r1 � �1
�1

�2#
+ E

"�
r2 � �2
�2

�2#
� 2�E

��
r1 � �1
�1

��
r2 � �2
�2

��!
= �1;

resulting in (6) simplifying as

	 = �1E

"�
r1 � �1
�1

�1�
r2 � �2
�2

�2#
+ �2E

"�
r1 � �1
�1

�2�
r2 � �2
�2

�1#

+�3E

"�
r1 � �1
�1

�1�
r2 � �2
�2

�3#
+ �4E

"�
r1 � �1
�1

�3�
r2 � �2
�2

�1#
(7)

+�5E

"�
r1 � �1
�1

�2�
r2 � �2
�2

�2#
� (1 + �) :

This expression shows that 	 is a function of the higher order comoments including

coskewness, cokurtosis and covolatility. For the special case of bivariate normality

�1 = �2 = �3 = �4 = �5 = 0; (7) reduces to

	BN = � (1 + �BM) = �
�
1 + log (2�) +

1

2
log
�
�21�

2
2

�
1� �2

���
; (8)

which uses the property of the bivariate normal distribution that an analytical ex-

pression is available for the normalizing constant �; in this case given by �BN =

log (2�)+log (�21�
2
2 (1� �2)) =2: Inspection of (8) shows that increases in the (absolute)

value of the correlation between and r1 and r2; causes an increase in 	which represents
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an increase in interdependence. This function also has a minimum at � = 0 given by

� (1 + log (2�) + ln (�21�22) =2) :
Figure 3 gives the simple case of a (standardized) bivariate normal distribution,

where �1 = �2 = 0 and �
2
1 = �

2
2 = 1. Figures 3(a) and 3(b) demonstrate the case of in-

dependence with the correlation parameter set at � = 0:0: The probability contour plot

depicting independence in Figure 3(b) shows that equal probabilities are represented

by concentric circles. Setting � = 0 in (8) for independence, together with �21 = �
2
2 = 1

because of the standardization, 	0 = � (1 + log (2�)) = �2:8379: The e¤ect on 	 by
allowing for dependence through positive correlation with � = 0:3; is given in Figures

3(c) and 3(d). The contour plot in Figure 3(d) shows that the contour probabilities

are now ellipsoidal with more of the mass of the distribution located along the main

axis of the ellipsoids which has positive slope. This increase in concentration from the

case of independence as given in Figures 3(a) and 3(b), now yields a higher value of

interdependence equal to

	BN = �
�
1 + ln (2�) +

1

2
ln
�
1� 0:32

��
= �2:7907:

Figure 4 shows the e¤ects of covolatility and coskewness on the (standardized) gen-

eralized bivariate normal distribution with � = 0:3. Figures 4(a) and 4(b) demonstrate

the e¤ects of covolatility on the distribution by setting �5 = �0:5 and �1 = �2 = �3 =
�4 = 0: A comparison of the probability contour plots in Figures 4(b) and 3(d) shows

that covolatility tends to have a greater impact on the tails of the distribution where

the probability contours take on the shape of a parallelogram. From (7) the e¤ect

of covolatility on the entropy measure of interdependence is �2:7586; which is higher
than the value of �2:7907 where dependence between r1 and r2 is solely through the
parameter �.3

The inclusion of coskewness in addition to covolatility is demonstrated in Figures

4(c) and 4(d) by setting �2 = �0:6 and �5 = �0:5: Coskewness has the e¤ect of
stretching the contours in the positive and negative directions of r1 in the case of

negative values of r2; while increasing the concentration of the distribution around r1 =

r2 = 0:0:Moreover, the additional coskewness results in an increase in interdependence

with 	 increasing from �2:7586 to �2:7103:
3A bivariate numerical integration procedure is used to evaluate the expectations in (7).
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Figure 3: Bivariate (standardized) normal distributions: Independence is given by
Figures (a) and (b) assuming a correlation parameter of � = 0:0. Dependence is given
by Figures (c) and (d) assuming a correlation parameter of � = 0:3:
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Figure 4: Bivariate generalized (standardized) normal distributions: Covolatility is
given by Figures (a) and (b) assuming �1 = �2 = �3 = �4 = 0; �5 = �0:5; and � = 0:3.
Coskewness is given by Figures (c) and (d) assuming �2 = �0:6; �1 = �3 = �4 = 0;
�5 = �0:5 and � = 0:3:
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3.2 Implementation

In practice to evaluate 	 in (4) it is necessary to estimate the unknown parameters

�; which is achieved by deriving the sample analogue of 	: Assuming that the law of

large numbers holds an approximation of the expectations E [h] is given by the sample

average
1

T

TX
t=1

ht(�)
p! E [h] : (9)

This suggests that the sample equivalent measure of interdependence in (4) is

	T (�) =
1

T

TX
t=1

ht(�)� �(�): (10)

The expression on the right hand-side of (10) is e¤ectively the log-likelihood function

of the generalized exponential distribution for a sample of t = 1; 2; � � � ; T observations.
Evaluating this expression using a consistent estimator b� of �, the interdependence

measure is evaluated as

	T (b�) = 1

T

TX
t=1

ht(b�)� �(b�); (11)

where in the case of the generalized normal distribution in (5) ht(b�) is de�ned as
ht(b�) = �1

2

�
1

1� b�2
� �

r1t � b�1b�1
�2
+

�
r2t � b�2b�2

�2
� 2b��r1t � b�1b�1

��
r2t � b�2b�2

�!

+b�1�r1t � b�1b�1
��

r2t � b�2b�2
�2
+ b�2�r1t � b�1b�1

�2�
r2t � b�2b�2

�
+b�3�r1t � b�1b�1

��
r2t � b�2b�2

�3
+ b�4�r1t � b�1b�1

�3�
r2t � b�2b�2

�
+b�5�r1t � b�1b�1

�2�
r2t � b�2b�2

�2
: (12)

Equations (11) and (12) suggest that to evaluate 	T (b�), the unknown parameters
� = f�1; �1; �2; �2; �; �1; �2; �3; �4; �5g ; (13)

are chosen to maximize the log-likelihood function of the bivariate generalized expo-

nential distribution in (10), with the interdependence measure 	T representing the

log-likelihood function evaluated at the maximum likelihood estimates. As the log-

likelihood of the generalized exponential distribution in (10) is a nonlinear function
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of the unknown parameters �; an iterative gradient algorithm is needed to compute

the maximum likelihood estimates. In the application in Section 5 the GAUSS soft-

ware MAXLIK Version 10 is used. To reduce the computations the returns data are

standardized which reduces the number of unknown parameters in (13) to 6 given by

f�; �1; �2; �3; �4; �5g :

3.3 Testing for Independence

The estimator of the entropy measure of interdependence in (11) can be used to gener-

ate a test of independence by comparing its unrestricted value with the corresponding

measure under the null hypothesis of independence. As already noted above imposing

the independence restrictions � = �1 = �2 = �3 = �4 = �5 = 0; an analytical expression

for 	 is available under the null hypothesis. From (7) and (8), imposing these restric-

tions in the case where the variables are standardized, 	 under the null hypothesis

simply reduces to the constant

	0 = � (1 + ln (2�)) = �2:8379: (14)

This result suggests that a test of interdependence can be based on the test statistic

I =

 
	T (b�)�	0
se(	(b�))

!
; (15)

where 	T (b�) is given by (11) with ht(b�) de�ned in (12) in the case of the generalized
normal distribution, 	0 is given in (14) and se(	(b�)) is the standard error of 	(b�).
Under the null hypothesis this statistic has an asymptotic normal distribution with

zero mean and unit variance.

To generate an expression for the standard error in (15) the delta method is used

se(	(b�)) = pD0
D; (16)

where D is a (N � 1) vector of the derivatives of the entropy measure of interdepen-
dence with respect to the parameters� evaluated at b�; and 
 is the variance covariance
matrix of b� which is obtained directly from the maximum likelihood procedure. The

derivatives in D are obtained from

	T =
1

T

TX
t=1

ht � (1 + �) ; (17)
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where

ht = �
1

2

�
1

1� �2

��
z21t + z

2
2t � 2�z1tz2t

�
+�1z1tz

2
2t+�2z

2
1tz2t+�3z1tz

3
2t+�4z

3
1tz2t+�5z

2
1tz

2
2t;

zit represent the standardized variables and

� = log

Z Z
exp (h) dz1dz2; (18)

is the normalizing constant. Taking the derivatives of (17) with respect to the unknown

parameters in �; gives

@	T
@�

=
1

T

TX
t=1

�
1

(�2 � 1)2
��
�2 + 1

�
z1tz2t � �z21t � �z22t

��
� @�
@�

@	T
@�1

=
1

T

TX
t=1

z1tz
2
2t �

@�

@�1

@	T
@�2

=
1

T

TX
t=1

z21tz2t �
@�

@�2
(19)

@	T
@�3

=
1

T

TX
t=1

z1tz
3
2t �

@�

@�3

@	T
@�4

=
1

T

TX
t=1

z31tz2t �
@�

@�4

@	T
@�5

=
1

T

TX
t=1

z21tz
2
2t �

@�

@�5
:

Assuming that the orders of integration and di¤erentiation can be reversed the deriv-

atives of � with respect to the parameters are given by

@�

@�i
=

@

@�i
log

Z Z
exp (h) dz1dz2 =

R R
@
@�i
exp (h) dz1dz2R R

exp (h) dz1dz2
; (20)

where �i is an element of the parameter vector �: Using (20) in (19) gives the following
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expressions for the derivatives

@�

@�
=

1

(�2 � 1)2
Z Z ��

�2 + 1
�
z1z2 � �z21 � �z22

�
exp (h� �) dz1dz2

=
1

(�2 � 1)2
E
���
�2 + 1

�
z1z2 � �z21 � �z22

��
@�

@�1
=

Z Z
z1z

2
2 exp (h� �) dz1dz2 = E

�
z1z

2
2

�
@�

@�2
=

Z Z
z21z2 exp (h� �) dz1dz2 = E

�
z21z2

�
@�

@�3
=

Z Z
z1z

3
2 exp (h� �) dz1dz2 = E

�
z1z

3
2

�
@�

@�4
=

Z Z
z31z2 exp (h� �) dz1dz2 = E

�
z31z2

�
@�

@�5
=

Z Z
z21z

2
2 exp (h� �) dz1dz2 = E

�
z21z

2
2

�
:

As the maximum likelihood estimator of � is based on solving the gradient expressions

in (19), these expressions show that the maximum likelihood procedure applied to the

generalized exponential distribution is obtained by �nding the estimator which equates

the sample and expected moments of the distribution.

4 Simulation Experiments

This section provides the results of some simulation experiments to determine the abil-

ity of the entropy interdependence measure given in Section 3 to identify changes in

interdependence over time where the data generating processes are taken from mod-

els used in empirical �nance. The models consist of the bivariate dynamic CAPM of

Bekaert and Harvey (1995) and the multi-asset cross-market dispersion model of Sol-

nik and Roulet (2000). To capture changes in interdependence over time the strategy

adopted follows Diebold and Yilmaz (2009,2014) whereby dynamic measures of interde-

pendence are constructed by estimating the entropy measure of interdependence using

a rolling-window over the sample period. The results presented below are for a single

simulation run, with additional simulations reported in Appendix B.4

4In choosing the window width there is a trade-o¤ between having a su¢ cient number of observa-
tions in each subsample to obtain reliable parameter estimates, and not choosing too wide a window
that smooths out the e¤ects of events on the interdependence measure. In the simulation experiments
a window width of 130 is adopted to satisfy these requirements, although other window widths give
very similar results.
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4.1 Bekaert-Harvey Model of Integration

Bekaert and Harvey (1995) specify a dynamic CAPM that is widely used in the lit-

erature to identify changes in integration over time. Letting rit represent the excess

returns on a portfolio in country i ; and rwt the excess returns on a world portfolio, the

model is speci�ed as

rit = �t�wt�iwt + (1� �t)�it�2it + uit
rwt = �wt�

2
wt + uwt;

(21)

where 0 � �t � 1 is the time-varying measure of integration. In the extreme case

of full global market integration �t = 1; with the country risk premium determined

by the product of the world price of covariance risk (�wt) and the covariance between

country and world excess returns (�iwt). At the other extreme of market segmentation,

�t = 0 with the risk premium determined by the product of the local price of risk (�it)

and the local excess returns variance (�2it). The disturbances uit and uwt are normally

distributed with zero means and conditional covariance matrix based on the constant

correlation bivariate GARCH speci�cation. Time-variation in excess returns comes

from four sources: the integration measure (�t) ; risk prices (�wt; �it) ; risk quantities

(�iwt; �
2
it; �

2
wt) and idiosyncratic risks (uit; uwt) :

The model in (21) is simulated by specifying the time-varying measure of integra-

tion �t; as a random walk with positive drift. The positive drift parameter ensures

that �t trends upwards resulting in a movement from market segmentation to global

integration. The market prices of risk �it and �wt; are assumed to be stochastic with

a mean of 2:1: The risk quantities are determined using a bivariate GARCH constant

correlation model with �2it and �
2
wt having GARCH speci�cations of the general form

�2t = �0 + �1u
2
t�1 + �1�

2
t�1; with parameters �0 = 0:05; �1 = 0:05; �1 = 0:9 for both

asset returns, and correlation parameters of � = 0:0 (market segmentation) and � = 0:7

(market interdependence). The conditional variances and covariances in (21) represent

weighted averages of the market segmentation and market interdependence conditional

covariance matrices using the time-varying integration parameter �t.

The results of simulating the Bekaert-Harvey model in (21) for T = 2000 observa-

tions are presented in Figure 5. The two graphs in the �rst column give the simulated

world returns (rwt) and the country returns (rit): The top right panel gives the time-

varying integration parameter �t: In the �rst part of the sample there is near market
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segmentation with �t close to zero. In the second half of the sample �t trends upwards

towards unity as the country asset market becomes more globally integrated.

The entropy based interdependence measure 	t; is given in the bottom right panel

using a rolling window of length 130 periods applied to the simulated returns, rwt and

rit. Through the lens of rwt and rit, 	t tracks the general changes in interdependence

over time as the model switches from market segmentation to global integration, even

though �t is a latent variable and hence not directly observed. The value of 	t is

relatively low in the initial sample period which is consistent with the local asset

market being nearly perfectly segmented. After which, 	t trends upwards re�ecting

the increasing role of global factors in determining the country�s risk premium. The

overall correlation between �t and 	t is 0:88:

4.2 Solnik-Roulet Model of Cross-sectional Dispersion

Solnik and Roulet (2000) identify changes in �nancial interdependence over time us-

ing a multivariate measure of dispersion based on the cross-market standard deviation

of returns at each point in time (�t). Falls in �t represent lower cross-sectional dis-

persion in asset markets and increasing �nancial interdependence, whereas increases

in �t represent greater dispersion in cross-sectional returns and a movement towards

independence.

To simulate the Solnik-Roulet model the approach is to draw N = 20 cross-market

returns at each point in time t from a multivariate normal distribution with an equicor-

relation matrix at each point in time, with the correlations �t changing over time based

on a random walk. The simulated returns are given in Figure 6 for a sample of size

T = 2000:

A plot of the time-varying standard deviation �t is presented in the �rst panel of

Figure 7. Following Yu, Fung and Tam (2010), �t is transformed using a Hodrick-

Prescott �lter with a smoothing parameter of  = 130: For the �rst third of the sample

the standard deviation is relatively high suggesting relatively low levels of interdepen-

dence amongst the N = 20 asset markets. This is followed by a period of increasing

�nancial interdependence with �t falling in the middle of the sample after which there

is a deterioration of interdependence with �t increasing again. For the remainder of

the sample �t tends to trend downwards corresponding to periods of increased inter-
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Figure 5: Simulation results of the Bekaert-Harvey model in (21) based on a sample
size of T = 2000. The �rst column gives the simulated returns for the world (rwt)
and the country (rit): The top panel of the second column gives the measure of �nan-
cial integration (�t) with �t = 1 representing global market integration and �t = 0
representing market segmentation. The bottom panel of the second column gives the
interdependence measure 	t applied to the simulated returns with a data window of
130 observations:
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Figure 6: Simulated returns of the Solnik-Roulet model based on a sample size of
T = 2000 with N = 20 asset markets.

dependence.

The interdependence measure 	t is calculated using the N = 20 simulated time

series of asset returns in Figure 6 with a data window of 130 periods. The interdepen-

dence measure 	t is computed for N � 1 pairs of asset returns with the N th market

arbitrarily taken as the numeraire asset, with the overall estimate of interdependence

obtained by aggregating the log-likelihood values for each pair of assets. The results

for 	t are presented in the second panel of Figure 7. Inspection of Figure 7 shows that

	t closely mirrors the movements in the Solnik-Roulet measure of dispersion given by

�t, producing a very high correlation between �t and 	t of 0:97:
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Figure 7: Simulation results of the Solnik-Roulet model based on a sample size of
T = 2000 with N = 20 asset markets. The �rst panel gives the measure of �nancial
interdependence (�t) with falls in �t representing increasing �nancial interdependence
and increases in �t representing movements towards independence. The second panel
is the interdependence measure 	t applied to the simulated country and global returns
with a data window of 130 observations:
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5 Application to the Euro Zone

The entropy based measure of �nancial interdependence in (11) is applied to examine

changes in comoments of equity markets in the euro zone both globally and regionally.

Previous research has used a broad array of techniques to model the various aspects

of interdependence of European equity markets within Europe. Models of general Eu-

ropean interdependence examine asymmetric volatility spillovers (Baele (2005)), time

varying copulas (Bartram, Taylor and Wang (2007)), factor models of international

equity market interdependence (Bekaert, Hodrick, and Zhang (2009)), tail dependence

using coexceedance probabilities (Beine, Cosma, and Vermeulen (2010)), and short

and long term interdependence using wavelets and copulas (Shahzad, Kumar, Ali and

Ameer (2016)). Models of European equity market integration use GARCH models

(Fratzcher (2002), Kim, Moshirian and Wu (2005)) and factor models (Berger and

Pozzi (2013)). Papers examining contagion for Europe are based on Granger causality

and vector error correction models (Gentile and Giordano (2013)), sectoral factor mod-

els (Bekaert, Ehrmann, Fratzscher and Mehl (2014)), and tests of changes in higher

order comoments (Fry-McKibbin, Hsiao and Martin (2017), Chan, Fry-McKibbin and

Hsiao (2017)).

5.1 Data

The weekly percentage log-returns on equities from 1990 to 2017 for the same euro zone

countries introduced in Section 2 are presented in Figure 8. Illustrative summary sta-

tistics are given in Table 1 for the four periods: pre-euro (1990-1998), euro (1999-2007),

the GFC (2008-2009) and the post-GFC (2010-2017). The statistics are presented only

for the countries with data for the entire duration of the sample period.5

For the pre-euro and euro periods all countries experience positive returns in equities

apart from Austria in the 1990-98 period. This contrasts with the GFC period where

average returns are all negative, which return to being positive during the post-GFC

period with the exception of Greece and to a lesser extent Austria and Spain. The

e¤ect of the GFC on volatility in Euro zone equity returns as well as in the U.S. is

highlighted by the increase in the standard deviation compared to pre-GFC levels.

5Statistics for the missing countries are available on request for the periods when their data does
become available.
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Figure 8: Eurozone weekly equity returns, 5 January 1990 - May 5, 2017. The shaded
areas represent the pre-euro (January 5, 1990 to December 25, 1998), euro (January
1, 1999 to December 28, 2007), GFC (January 4, 2008 to December 25, 2009) and
post-GFC (January 1, 2010 to May 5, 2017) periods respectively.

There are also increases in kurtosis for the same period with the exception of Finland.

During the euro period of 1999 to 2007, equity returns are negatively skewed which

become even more skewed during the GFC period, while softening in the post-GFC

period.

Table 2 provides comoment statistics between world equity returns as measured

by the U.S. equity market, and European equity returns for the same periods. Most

European countries with few exceptions experience increases in comoments with the

world between the pre and post Euro periods, further increasing during the GFC

and softening in the post GFC period. This is true of correlations, covolatility and
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Table 1:

Summary statistics of a selection of weekly euro zone and U.S. percentage equity
returns over four periods of the pre-euro (January 5, 1990 to December 25, 1998),
euro (January 1, 1999 to December 28, 2007), the GFC (January 4, 2008 to
December 25, 2009), and post-GFC (January 1, 2010 to May 5, 2017) periods

respectively. The European equity returns are selected based on availability of data
for the entire sample period.

Country Mean Min Max Std dev Skewness Kurtosis
Pre-euro: Jan 12, 1990 to Dec 25, 1998

Austria -0.035 -15.611 14.458 3.289 -0.203 5.742
Finland 0.280 -10.877 16.533 3.237 0.161 4.557
France 0.147 -7.811 10.224 2.602 0.001 3.175
Germany 0.215 -11.956 13.359 2.765 -0.233 5.197
Greece 0.356 -17.838 21.541 4.476 0.549 6.339
Netherlands 0.295 -9.461 12.746 2.334 -0.073 5.466
Spain 0.197 -10.269 14.716 2.976 0.088 4.507
U.S. 0.267 -5.324 7.062 1.770 0.001 3.674

Euro: Jan 15, 1999 to Dec 28, 2007
Austria 0.345 -12.378 6.712 2.687 -0.686 4.455
Finland 0.138 -23.517 16.843 4.429 -0.670 5.944
France 0.112 -10.505 11.056 2.705 -0.232 4.426
Germany 0.137 -12.298 12.909 3.200 -0.335 4.455
Greece 0.167 -14.716 15.687 3.628 -0.065 5.059
Netherlands 0.034 -11.696 13.604 2.905 -0.543 5.322
Spain 0.132 -9.530 11.845 2.682 -0.285 4.246
U.S. 0.032 -12.330 7.492 2.309 -0.586 6.241

GFC: Jan 4, 2008 to Dec 25, 2009
Austria -0.606 -36.629 18.534 7.113 -1.227 8.635
Finland -0.578 -17.976 10.382 4.542 -0.608 4.291
France -0.373 -27.545 13.739 5.612 -1.034 7.352
Germany -0.316 -26.841 15.289 5.811 -0.890 6.906
Greece -0.839 -26.167 17.907 6.134 -0.711 5.588
Netherlands -0.442 -31.249 13.782 5.868 -1.248 9.137
Spain -0.253 -26.321 12.408 5.585 -1.268 7.587
U.S. -0.261 -20.084 11.356 4.237 -0.708 6.983

Post-GFC: Jan 1, 2010 to May 5, 2017
Austria -0.012 -18.033 10.984 3.414 -0.880 6.242
Finland 0.109 -15.232 7.599 2.737 -0.742 6.045
France 0.016 -16.153 11.379 3.139 -0.628 5.621
Germany 0.128 -14.755 11.308 3.077 -0.554 5.337
Greece -0.349 -21.227 13.982 5.285 -0.364 3.930
Netherlands 0.053 -14.572 10.328 2.792 -0.626 5.706
Spain -0.088 -19.196 11.491 3.823 -0.444 4.661
U.S. 0.197 -7.460 7.128 1.964 -0.447 4.734
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cokurtosis. In the case of coskewness, it is negative between all Eurozone countries

and the world prior to the GFC, becoming more negative during the GFC period, and

decreasing thereafter in the post-GFC period, but not necessarily to pre-GFC levels.

5.2 Global Interdependence

Table 3 provides the global interdependence results based on (11) for Europe as well as

for the euro zone country equity markets, with the U.S. chosen as the benchmark global

equity market. The results are presented for the pre-euro, euro, GFC and post-GFC

periods as well as for the total period. In reporting the interdependence measure the

values presented are with respect to the measure of independence 	0 in (14). Also given

in the table are the standard errors calculated using the delta method with the ratio

of the two representing a t-statistic which under the null hypothesis of independence

is asymptotically distributed as N (0; 1) :

The results given in Table 3 show that Europe operated independently of global

equity markets prior to the start of the euro. This changes with the introduction of

the euro with global interdependence increasing four-fold from 0:7 to 2:9: Inspection of

the individual country results for this period reveal that France and Germany play the

major roles in achieving greater global interdependence. This trend increases during

the GFC with European equity markets becoming even more globally interconnected

with 	(b�) � 	0 for Europe more than doubling from 2:9 to 7:2: The e¤ects of the

GFC are widespread with nearly all euro zone countries showing evidence of global

interdependence, with the exceptions being Greece and Italy. There is a fall in global

interdependence post-GFC for Europe to levels that are nonetheless still higher than

they were prior to the GFC with 	(b�)�	0 decreasing from 7:2 to 4:7: This reduction
in equity market interdependence is largely due to Greece, Ireland, Portugal and Spain,

and to a lesser extent Luxembourg. As these countries were some of the most a¤ected

countries of the crisis this result is consistent with expectations regarding these markets

operating independently of global equity markets.6

Figure 9 provides an even more re�ned analysis of changes in global interdependence

over time by computing 	(b�) � 	0 over a rolling window for those countries having
6Greece, Portugal and Spain all negotiated �nancial support packages from the IMF, the EU or

a combination of both beginning in 2010 and implemented austerity measures during the post GFC
period.
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Table 2:

Comoment statistics between weekly world (w) and selected euro zone equity returns
(i) over four periods of the pre-euro (January 5, 1990 to December 25, 1998), euro
(January 1, 1999 to December 28, 2007), the GFC (January 4, 2008 to December 25,
2009), and post-GFC (January 1, 2010 to May 5, 2017) periods respectively. World

equity returns are computed using U.S. equity log-returns.

Country Correlation Coskewness Covolatility Cokurtosis
(r1w; r

1
i ) (r1w; r

2
i ) (r2w; r

1
i ) (r2w; r

2
i ) (r1w; r

3
i ) (r3w; r

1
i )

Pre-euro: Jan 12, 1990 to Dec 25, 1998
Austria 0.283 -0.188 -0.030 1.821 1.904 1.310
Finland 0.355 0.041 0.056 1.881 1.994 1.560
France 0.451 0.157 0.153 1.841 1.577 1.910
Germany 0.394 -0.022 0.077 2.103 2.254 1.756
Greece 0.186 -0.042 -0.050 1.709 1.681 1.174
Netherlands 0.483 0.068 0.085 2.501 3.047 2.135
Spain 0.445 0.207 0.175 2.381 2.362 2.070

Euro: Jan 15, 1999 to Dec 28, 2007
Austria 0.262 -0.203 -0.289 1.597 1.348 1.393
Finland 0.604 -0.251 -0.130 2.662 3.090 2.657
France 0.720 -0.106 -0.269 3.061 3.009 3.728
Germany 0.693 -0.108 -0.270 2.969 2.847 3.602
Greece 0.281 -0.190 -0.353 1.824 1.072 2.111
Netherlands 0.662 -0.213 -0.327 2.939 2.974 3.518
Spain 0.574 -0.162 -0.276 2.476 2.318 3.099

GFC: Jan 4, 2008 to Dec 25, 2009
Austria 0.789 -1.176 -0.979 7.030 7.570 6.736
Finland 0.814 -0.579 -0.631 4.736 4.186 5.591
France 0.857 -0.984 -0.856 6.595 6.726 6.650
Germany 0.867 -0.850 -0.781 6.401 6.427 6.568
Greece 0.655 -0.433 -0.563 3.675 3.556 4.611
Netherlands 0.845 -1.144 -0.944 7.369 7.986 6.993
Spain 0.820 -1.068 -0.872 6.252 6.484 6.402

Post-GFC: Jan 1, 2010 to May 5, 2017
Austria 0.718 -0.659 -0.514 3.989 4.608 3.847
Finland 0.754 -0.647 -0.515 4.081 4.586 4.001
France 0.784 -0.444 -0.403 3.896 4.323 3.944
Germany 0.786 -0.465 -0.443 4.040 4.359 4.050
Greece 0.473 -0.245 -0.353 1.948 1.830 2.230
Netherlands 0.802 -0.466 -0.435 4.134 4.554 4.105
Spain 0.667 -0.279 -0.295 2.991 3.195 3.217

Note: The comoment statistics between rmw;t and r
n
i;t are computed as T

�1PT
t=1 z

m
w;tz

n
i;t, where

zw;t = (rw;t � b�w) =b�w and zi;t = (ri;t � b�i) =b�i are respectively the standardized returns for
the World and Europe. 26



Table 3:

Global weekly interdependence measure relative to independence (	(b�)�	0) for the
euro zone countries for selected sample periods. Asymptotic standard errors are in

parentheses.

Region
/Country

Pre-euro
(1990-1998)

Euro
(1999-2007)

GFC
(2008-2009)

Post-GFC
(2010-2017)

Total
(1990-2017)

Europe 0.7178 2.9020 7.2404 4.6667 4.5760
(0.6688) (0.6217) (1.2766) (0.7077) (0.8629)

Austria 0.0672 0.0578 0.5797 0.3998 0.4599
(0.1455) (0.1820) (0.2737) (0.1980) (0.5946)

Belgium n.a. 0.1626 0.6481 0.4361 0.4231
(0.1951) (0.2856) (0.2046) (0.2523)

Finland 0.0830 0.2482 0.6037 0.4561 0.2965
(0.1474) (0.2404) (0.2986) (0.2068) (0.1925)

France 0.1236 0.4016 0.7365 0.5063 0.4347
(0.7449) (0.2412) (0.3114) (0.2046) (0.2201)

Germany 0.1018 0.3567 0.7624 0.5032 0.4092
(0.2047) (0.2350) (0.3002) (0.2006) (0.2050)

Greece 0.0565 0.0752 0.3475 0.1450 0.2039
(0.1838) (0.1472) (0.3078) (0.1910) (0.3110)

Italy n.a. 0.1435 0.4817 0.4168 0.4414
(0.2956) (0.3124) (0.2122) (0.4344)

Ireland n.a. 0.3510 0.6215 0.3476 0.4228
(0.2607) (0.2904) (0.1933) (0.2239)

Luxembourg n.a. 0.4807 0.6169 0.3562 0.4244
(0.7282) (0.2781) (0.2040) (0.3808)

Netherlands 0.1570 0.3199 0.7198 0.5416 0.4755
(0.6060) (0.2404) (0.3041) (0.2080) (0.2487)

Portugal n.a. 0.0785 0.4902 0.2467 0.2628
(0.1528) (0.2676) (0.1937) (0.4085)

Spain 0.1287 0.2262 0.6323 0.3114 0.3217
(0.1679) (0.2166) (0.2959) (0.8335) (0.6061)
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Figure 9: Time-varying estimates of global interdependence for the euro zone countries
using a rolling window of 3 years.

data extending over the full sample period. The window width is set at 3 years with

95% con�dence intervals given by the dashed lines. Additional results presented in

Appendix C show that choosing window widths of 2 years and 4 years does not change

the overall qualitative results regarding the general changes in interdependence over

time. These results support the sub-period analysis presented in Table 3 with equity

markets in euro zone countries becoming increasingly interdependent with global equity

markets over time from the start of the euro. The e¤ects of the GFC are also highlighted

with the big increase in 	(b�) � 	0; followed by the fall in global interdependence by
May 2017 to levels just prior to the GFC occurring.

Table 4 provides a breakdown of the contributions of the comoments, expressed as

a percentage of the total, to the changes in global equity market interdependence over

time identi�ed in Table 3 and Figure 9. While the covariance is an important con-

tributor to the global interdependence measure, it is the changes in the contributions

of the higher order moments that are important in identifying the channels a¤ecting

global interdependence. In particular, the increase in global interdependence from the
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Table 4:

Contribution of the weekly global interdependence measure components for the euro
zone, expressed as a percentage, for selected sample periods.

Dependence
Measure

Pre-euro
(1990-1998)

Euro
(1999-2007)

GFC
(2008-2009)

Post-GFC
(2010-2017)

Total
(1990-2017)

Covariance 80.2350 80.1324 95.7959 95.5665 74.3012

Coskewness 1.2002 1.4475 1.4640 0.8590 0.6559

Cokurtosis 30.9475 58.7543 -14.0438 23.7251 63.6793

Covolatility -12.3827 -40.3342 16.7838 -20.1507 -38.6364

start of the euro is primarily the result of cokurtosis with its contribution nearly dou-

bling during this period, while the contribution of the covariance remains constant.

Covolatility provides an o¤setting force during this period implying that volatility in

European and global equity markets became less dependent on each other. This all

changes during the GFC where volatilities in European and global equity markets be-

come more interconnected with the contribution of covolatility becoming positive. This

reversal also occurs for cokurtosis which has a dampening e¤ect on interdependence

during the GFC. For the post-GFC period the comoments switch back to their pre-GFC

roles with the even moments of covariance and cokurtosis having a positive e¤ect on

global interdependence and colatility having a dampening e¤ect. Finally, the decom-

positions presented in Table 4 reveal that coskewess plays a minor role in determining

the strength of the relationship between European and global equity markets.

The analysis presented so far is based on identifying contemporaneous relationships

between European and global equity markets. To allow for potential dynamic inter-

actions the entropy measure of interdependence is presented in Table 5 where a lead

(lag) signi�es that the U.S. leads (lags) Europe. The empirical results provide some

evidence that global equity markets lead Europe in aggregate, especially during the

euro and post-GFC periods, whereas during the GFC the relationship is contempora-

neous. From the perspective of the individual European countries no strong dynamic

linkages are identi�ed.
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Table 5:

Dynamic weekly global interdependence measure (	(b�)�	0) for the euro zone
countries for selected sample periods. Asymptotic standard errors are in parentheses.

A lead (lag) represents the U.S. leads (lags) Europe.

Region
/Country

Pre-euro
(1990-1998)

Euro
(1999-2007)

GFC
(2008-2009)

Post-GFC
(2010-2017)

Total
(1990-2017)

Lead Lag Lead Lag Lead Lag Lead Lag Lead Lag
Europe 0.19 0.17 0.75 0.92 1.93 2.03 0.50 0.44 1.54 1.48

(0.17) (0.91) (0.42) (2.49) (1.59) (1.71) (0.27) (1.52) (0.64) (1.60)

Austria 0.05 0.03 0.03 0.03 0.16 0.16 0.04 0.03 0.17 0.14
(0.14) (0.21) (0.21) (0.22) (0.43) (0.61) (0.25) (0.37) (0.50) (0.53)

Belgium n.a. n.a. 0.07 0.05 0.18 0.19 0.06 0.04 0.15 0.14
(0.14) (0.26) (0.38) (0.71) (0.29) (0.25) (0.48) (0.53)

Finland 0.02 0.03 0.03 0.02 0.14 0.10 0.08 0.03 0.06 0.03
(0.25) (0.22) (0.27) (0.38) (0.46) (0.45) (0.35) (0.25) (0.33) (0.20)

France 0.02 0.02 0.06 0.06 0.17 0.16 0.03 0.04 0.14 0.11
(0.25) (0.74) (0.28) (0.27) (0.50) (0.65) (0.22) (0.35) (0.43) (0.39)

Germany 0.02 0.03 0.06 0.06 0.14 0.17 0.03 0.03 0.11 0.11
(0.37) (0.85) (0.19) (0.30) (0.48) (0.51) (0.25) (0.27) (0.24) (0.34)

Greece 0.02 0.02 0.03 0.05 0.13 0.18 0.02 0.03 0.05 0.09
(0.15) (0.35) (0.31) (0.18) (0.32) (0.25) (0.16) (0.25) (0.18) (0.21)

Italy n.a. n.a. 0.03 0.07 0.16 0.16 0.04 0.04 0.27 0.16
(0.17) (0.20) (0.41) (0.42) (0.25) (0.29) (0.59) (1.10)

Ireland n.a. n.a. 0.18 0.09 0.17 0.15 0.07 0.04 0.14 0.13
(0.55) (0.27) (0.36) (1.04) (0.36) (0.61) (0.27) (0.35)

Luxembourg n.a. n.a. 0.08 0.33 0.21 0.20 0.03 0.04 0.12 0.22
(0.48) (1.33) (0.41) (0.85) (0.27) (0.24) (0.30) (0.93)

Netherlands 0.03 0.02 0.07 0.06 0.16 0.20 0.04 0.04 0.16 0.14
(0.31) (0.19) (0.16) (0.23) (0.45) (0.80) (0.22) (0.38) (0.55) (0.52)

Portugal n.a. n.a. 0.05 0.05 0.16 0.20 0.03 0.03 0.09 0.12
(0.16) (0.23) (0.45) (0.42) (0.19) (0.39) (0.34) (0.33)

Spain 0.03 0.02 0.06 0.05 0.14 0.16 0.03 0.04 0.10 0.08
(0.30) (0.19) (0.20) (0.28) (0.35) (0.55) (0.22) (0.37) (0.29) (0.29)
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5.3 European Interdependence

The entropy based measure of �nancial interdependence in (11) is now applied to iden-

tify changes in interdependence amongst euro zone countries, with Germany replacing

the U.S. as the benchmark. The empirical results for Europe in Table 6 are generally

consistent with those for global interdependence in Table 3. The degree of interde-

pendence 	(b�) � 	0 increases over time from the pre-euro to the euro periods with

Belgium, Ireland and Spain joining Austria, France and the Netherlands in achieving

greater interdependence with Germany, compared to just France and Germany when

using the global measure. As with the global case, European interdependence peaks

during the GFC with 	(b�)�	0 more than doubling from 4:5 to 9:7, with all countries
showing greater interdependence with Germany with the exception of Finland. As with

the global results, interdependence in Europe falls post GFC with 	(b�)� 	0 moder-
ating to 6:7, which is primarily driven by Greece and to a lesser extent Luxembourg.

Figure 10 shows the time varying re�nement of the measure of European �nancial

interdependence with Germany by computing 	(b�)�	0 over a rolling 3 year window
for those countries having data extending over the full sample period. A comparison of

the global and European results in Figure 9 and Figure 10 respectively, shows that the

time paths are very similar with the main di¤erence being that during the early years of

the formation of the euro zone there is statistical evidence of interdependence amongst

asset markets within Europe, whereas the results in Figure 9 reveal no evidence with

global asset markets.

Table 7 provides a breakdown of the entropy measure of interdependence between

euro zone and German equity markets into its components, expressed as a percentage

of the total. There are some notable di¤erences between the results in Table 7 and

the global interdependence results reported in Table 4. Similar to the global case

the covariance channel dominates European equity return interdependence although

the proportionate contribution is higher for Europe which ranges between 92% and

98% than for the U.S. where the range is between 80% and 96%. The second most

important contributor is again the higher order moment of cokurtosis. Covolatility has

a dampening e¤ect on European interdependence throughout the sample period, even

during the GFC, while on a global basis covolatility contributed to interdependence

during the GFC. This result suggests a fundamental change in interdependence between
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Table 6:

European interdependence measure (	(b�)�	0) for the euro zone countries for
selected sample periods. Asymptotic standard errors are in parentheses.

Region
/Country

Pre-euro
(1990-1998)

Euro
(1999-2007)

GFC
(2008-2009)

Post-GFC
(2010-2017)

Total
(1990-2017)

Europe 1.5481 4.5004 9.6611 6.9671 5.8594
(0.0863) (0.9307) (1.0801) (0.1644) (0.9338)

Austria 0.3417 0.1457 0.8321 0.6515 0.4868
(0.2057) (0.1912) (0.2996) (0.2130) (0.8084)

Belgium n.a. 0.3750 0.8888 0.8706 0.6762
(0.2154) (0.3169) (0.2650) (0.2160)

Finland 0.0844 0.1982 0.5882 0.4657 0.2363
(0.1472) (0.2151) (1.0132) (0.2093) (0.1941)

France 0.3450 0.7764 1.4777 1.0974 0.7751
(0.1895) (0.2315) (0.3272) (0.2228) (0.2986)

Greece 0.0836 0.1466 0.6001 0.2139 0.2011
(0.1516) (0.1960) (0.3588) (0.2159) (0.1722)

Italy n.a. 0.2673 0.5599 0.5930 0.5494
(0.1964) (0.3238) (0.2255) (0.2440)

Ireland n.a. 0.7659 1.0124 0.6835 0.7486
(0.2622) (0.3686) (0.2056) (0.2154)

Luxembourg n.a. 0.3193 0.5993 0.3643 0.4220
(0.4054) (0.3019) (0.2311) (0.2903)

Netherlands 0.4666 0.7266 1.0824 0.9689 0.8425
(0.2062) (0.2418) (0.3511) (0.2185) (0.1847)

Portugal n.a. 0.2265 0.8215 0.4591 0.4040
(0.9237) (0.2764) (0.2085) (0.8037)

Spain 0.2269 0.5159 1.1987 0.5991 0.5174
(0.1990) (0.2113) (0.2998) (0.2225) (0.1834)
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Figure 10: Time-varying estimates of European interdependence for the euro zone
countries using a rolling window of 3 years.

European and global equity markets during the GFC not present amongst European

equity markets with Germany.

To investigate the dynamic interactions between European and German equity re-

turns at di¤erent points in time, the entropy measure of interdependence is applied

for leads and lags of the German returns with those of the euro zone. The results in

Table 8 show that European interdependence with the German equity market is only

signi�cant on one occasion where the German equity market leads those of Europe dur-

ing the GFC. For the countries considered individually this is never the case, and it is

never the case that interdependence is signi�cant when the German equity market lags

those of Europe, indicating the contemporary nature of European interdependence.

6 Conclusions

The examination of the interdependence of asset returns has a long history, spanning a

wide range of frameworks and purposes, ranging from models of portfolio optimization,

risk management, option pricing, contagion and �nancial market integration. Higher

33



Table 7:

Contribution of the weekly European interdependence components for the euro zone,
expressed as a percentage, for selected sample periods.

Dependence
Measure

Pre-euro
(1990-1998)

Euro
(1999-2007)

GFC
(2008-2009)

Post-GFC
(2010-2017)

Total
(1990-2017)

Covariance 92.6325 95.4624 98.4260 97.8966 93.5127

Coskewness 0.5090 0.7414 0.4078 0.4047 0.3361

Cokurtosis 15.5626 15.2465 16.4505 25.7070 21.6785

Covolatility -8.7041 -11.4503 -15.2843 -24.0083 -15.5273

order comoments that contribute to interdependence amongst �nancial market asset

returns are an often neglected aspect of testing and measuring interdependence. Using

entropy theory a general procedure is developed to identify changes in asset return in-

terdependence over time. Attention is particularly placed on the changes in comoments

such as coskewness, cokurtosis, and covolatility in conjunction with more traditional

methods based on covariances. An important advantage of the proposed approach com-

pared to existing entropy based measures of market comovement is that the procedure

allows for a natural decomposition of asset returns in terms of the contribution from

the higher order comoments. A further advantage is that a new test of independence

is developed which arises naturally from the methodological framework.

The proposed approach uses the joint probability distribution to measure the strength

of the relationship amongst asset returns and provides an overall measure of the disper-

sion of this distribution. The chosen distribution is the generalized normal distribution

which is a subordinate distribution of the multivariate generalized exponential family

of distributions which is a �exible distribution able to capture simultaneously various

comoments linking asset returns. To model variations over time in the degree of inter-

dependence amongst asset returns the analysis is performed using a rolling window. A

range of simulation experiments based on existing models commonly adopted in em-

pirical �nance as data generating processes demonstrate the ability of the approach

to capture various forms of asset return interdependence by successfully tracking the

comovements in the simulated asset returns over the simulation window.

Applying the entropy measure of interdependence to identifying changes in the

comoments of weekly equity returns over time for the initial adopters of the euro
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Table 8:

Dynamic weekly European interdependence measure (	(b�)�	0) for the euro zone
countries for selected sample periods. Asymptotic standard errors are in parentheses.

Region
/Country

Pre-euro
(1990-1998)

Euro
(1999-2007)

GFC
(2008-2009)

Post-GFC
(2010-2017)

Total
(1990-2017)

Lead Lag Lead Lag Lead Lag Lead Lag Lead Lag
Europe 0.17 0.17 0.81 0.89 1.68 1.78 0.39 0.36 1.21 1.12

(0.74) (0.86) (0.55) (1.82) (0.87) (1.72) (0.37) (0.42) (0.76) (2.18)

Austria 0.04 0.03 0.03 0.03 0.16 0.17 0.03 0.04 0.12 0.12
(0.32) (0.28) (0.21) (0.30) (0.54) (0.63) (0.32) (0.41) (0.52) (1.08)

Belgium n.a. n.a. 0.05 0.05 0.16 0.20 0.05 0.04 0.11 0.12
(0.20) (0.27) (0.42) (0.75) (0.35) (0.37) (0.48) (0.58)

Finland 0.04 0.03 0.02 0.02 0.14 0.08 0.07 0.02 0.04 0.02
(0.19) (0.33) (0.21) (0.19) (0.49) (0.42) (0.39) (0.23) (0.34) (0.14)

France 0.02 0.04 0.04 0.04 0.17 0.14 0.02 0.02 0.10 0.08
(0.34) (0.25) (0.26) (0.27) (0.55) (0.65) (0.36) (0.22) (0.43) (0.39)

Greece 0.04 0.02 0.05 0.03 0.10 0.21 0.02 0.04 0.03 0.06
(0.23) (0.33) (0.20) (0.20) (0.31) (0.33) (0.17) (0.29) (0.12) (0.16)

Italy n.a. n.a. 0.06 0.06 0.15 0.15 0.03 0.03 0.19 0.12
(0.24) (0.28) (0.47) (0.45) (0.32) (0.44) (0.63) (1.10)

Ireland n.a. n.a. 0.11 0.09 0.13 0.14 0.04 0.04 0.10 0.10
(0.29) (0.26) (0.54) (1.03) (0.38) (0.29) (0.32) (0.28)

Luxembourg n.a. n.a. 0.33 0.45 0.20 0.18 0.03 0.03 0.25 0.22
(0.73) (1.34) (0.61) (0.84) (0.30) (0.22) (0.58) (0.78)

Netherlands 0.02 0.03 0.05 0.05 0.15 0.19 0.03 0.03 0.11 0.10
(0.85) (0.43) (0.26) (0.27) (0.53) (0.82) (0.31) (0.44) (0.52) (1.09)

Portugal n.a. n.a. 0.04 0.04 0.16 0.17 0.03 0.03 0.08 0.10
(0.15) (0.23) (0.51) (0.37) (0.34) (0.34) (0.43) (0.25)

Spain 0.03 0.02 0.04 0.04 0.15 0.14 0.03 0.03 0.07 0.07
(0.26) (0.90) (0.18) (0.21) (0.51) (0.59) (0.33) (0.37) (0.32) (0.32)
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currency using a sample period from the 1990s to early 2017, shows that there is an

increase in interdependence in equity returns both within Europe as well as globally,

corresponding to the introduction of the euro in 1999. The global �nancial crisis (GFC)

provides a further stimulus to increasing the interdependence amongst European asset

returns, before returning to levels experienced just prior to the GFC. The results also

show signi�cant evidence of interdependence of equity markets within Europe prior to

the introduction of the Euro, but not with global equity markets.
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A Optimality Properties of the Generalized Nor-
mal Distribution

The generalized normal distribution has the property that it represents the maximum

entropy distribution provided that it satis�es a set of constraints corresponding to the

desired moments and comoments that capture interdependence amongst asset returns.

Let f (z1; z2) be the joint density function where z1 and z2 are standardized random

variables with zero means and unit variances. The aim is to choose f (z1; z2) subject

to the following constraints

1 =

Z Z
f (z1; z2) dz1dz2;

1 =

Z Z
z21f (z1; z2) dz1dz2; 1 =

Z Z
z22f (z1; z2) dz1dz2

�12 =

Z Z
z1z2f (z1; z2) dz1dz2; S12 =

Z Z
z1z

2
2f (z1; z2) dz1dz2 (22)

S21 =

Z Z
z21z2f (z1; z2) dz1dz2; K13 =

Z Z
z1z

3
2f (z1; z2) dz1dz2

K31 =

Z Z
z31z2f (z1; z2) dz1dz2; K22 =

Z Z
z21z

2
2f (z1; z2) dz1dz2:

The �rst constraint is the adding up constraint ensuring that f (z1; z2) is a proper

bivariate density function. The next two constraints are the normalizing conditions

corresponding to unit variances. The next set of constraints are respectively the co-

variance, the coskewness terms S12 and S21; the cokurtosis terms K13 and K31; and the

covolatility term K22:

To choose a density function f (z1; z2) that maximizes entropy subject to the con-

straints in (22) de�ne the constrained objective function

J =

Z Z
(log f (z1; z2)) f (z1; z2) dz1dz2 � �0

�
1�

Z Z
f (z1; z2) dz1dz2

�
��1

�
1�
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�
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�
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�
��3

�
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�
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�
S12 �

Z Z
z1z

2
2f (z1; z2) dz1dz2

�
��5

�
S21 �

Z Z
z21z2f (z1; z2) dz1dz2

�
� �6

�
K13 �

Z Z
z1z

3
2f (z1; z2) dz1dz2

�
��7

�
K31 �

Z Z
z31z2f (z1; z2) dz1dz2

�
� �8

�
K22 �

Z Z
z21z

2
2f (z1; z2) dz1dz2;

�
;

(23)
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where the �rst term de�nes the entropy of a distribution and the �is are the Lagrange

multiplers. Using variational calculus, a small variation �f about f produces a variation

�J about J of

�J =

Z Z
�f (z1; z2) dz1dz2 +

Z Z
(log f (z1; z2)) �f (z1; z2) dz1dz2

+�0

Z Z
�f (z1; z2) dz1dz2 + �1

Z Z
z21�f (z1; z2) dz1dz2

+�2

Z Z
z22�f (z1; z2) dz1dz2 + �3

Z Z
z1z2�f (z1; z2) dz1dz2

+�4

Z Z
z1z

2
2�f (z1; z2) dz1dz2 + �5

Z Z
z21z2�f (z1; z2) dz1dz2

+�6

Z Z
z1z

3
2�f (z1; z2) dz1dz2 + �7

Z Z
z31z2�f (z1; z2) dz1dz2

+�8

Z Z
z21z

2
2�f (z1; z2) dz1dz2:

Collecting terms gives

�J =

Z Z
�f (z1; z2)

�
1 + log f (z1; z2) + �0 + �1z

2
1 + �2z

2
2 + �3z1z2

+�4z1z
2
2 + �5z

2
1z2 + �6z1z

3
2 + �7z

3
1z2 + �8z

2
1z
2
2

	
dz1dz2: (24)

A maximum of J in (23) is achieved by setting �J = 0 in (24) which requires that

the term in parentheses in (24) is also zero

1+log f (z1; z2)+�0+�1z
2
1+�2z

2
2+�3z1z2+�4z1z

2
2+�5z

2
1z2+�6z1z

3
2+�7z

3
1z2+�8z

2
1z
2
2 = 0:

Rearranging this expression by solving for f (z1; z2) yields the generalized normal dis-

tribution

f (z1; z2) = exp
�
�1� �0 � �1z21 � �2z22 � �3z1z2 � �4z1z22 � �5z21z2 � �6z1z32

��7z31z2 � �8z21z22
�
;

or

= exp

�
�1
2

�
1

1� �2

��
z21 + z

2
2 � 2�z12

�
+ �1z1z

2
2 + �2z

2
1z2 + �3z1z

3
2 ;

+�4z
3
1z2 + �5z

2
1z
2
2 � �

�
;

where the normalizing constant is � = 1+�0; �1 = �2 = 0:5= (1� �2) ; �3 = ��= (1� �2) ;
and �i = ��i+3; i = 1; 2; 3; 4; 5:
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B Additional Simulation Properties

This appendix reports some additional simulation results of the properties of the en-

tropy interdependence measure based on the Bekaert-Harvey and Solnik-Roulet models

presented in Sections 4.1 and 4.2 respectively.

B.1 Bekaert-Harvey Model

The results of an alternative simulation of the Bekaert-Harvey model to the one given

in Figure 5 are presented in Figure 11. The data generating process is based on

(21) for a sample of size T = 2000, except that the parameters used to generate the

time-varying integration parameter �t; di¤er. The two graphs in the �rst column of

Figure 11 give the simulated world returns (rwt) and the country returns (rit): The

parameter �t shows that there is near full global integration at the start of the period

with conditions changing to market segmentation roughly two thirds the way through

the sample. This is immediately followed by a period of increasing global integration

eventually stabilizing on a level of global integration less than that achieved at the

start of the sample period.

The bottom panel of the second column shows that the entropy interdependence

measure 	t; is able to track the latent global integration measure. As with the inte-

gration measure �t; 	t also starts o¤ at a high value consistent with rwt and rit being

interdependent. The interdependence measure then begins to fall as the relative impor-

tance of local factors start to increase. This is followed by a period where the entropy

measure shows increasing interdependence between the two returns, albeit with some

large swings, eventually settling upon a level of interdependence that is also less than

the level that occurred at the start of the sample. The correlation between �t and 	t

for this simulation run is 0:70:

B.2 Solnik-Roulet Model

Figure 11 provides the results of an alternative simulation of the Solnik-Roulet model

to the one given in Figure 7 where the number of countries in the sample is doubled to

N = 40: The sample size is still held at T = 2000. The top graph in Figure 12 gives the

Solnik-Roulet measure �t; which is based on the cross-sectional standard deviation of

the N = 40 returns at each point in time. The degree of interdependence is relatively
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Figure 11: Altenative simulation results of the Bekaert-Harvey model in (21) based on
a sample size of T = 2000. The �rst column gives the simulated returns for the world
(rwt) and the country (rit): The top panel of the second column gives the measure of
�nancial integration (�t) with �t = 1 representing global market integration and �t = 0
representing market segmentation. The bottom panel of the second column gives the
interdependence measure 	t applied to the simulated returns with a data window of
130 observations:
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Figure 12: Simulation results of the Solnik-Roulet model based on a sample size of
T = 2000 with N = 40 asset markets. The �rst panel gives the measure of �nancial
interdependence (�t) with falls in �t representing increasing �nancial interdependence
and increases in �t representing movements towards independence. The second panel
is the interdependence measure 	t applied to the simulated country and global returns
with a data window of 130 observations:

stable for most of the �rst half of the sample. In the second half of the sample, �t

oscillates around a negative trend as asset returns become more interdependent. The

entropy interdependence measure 	t given in the bottom panel of Figure 12 mirrors the

movements in �t as it is �at during the �rst half of the sample, while in the second half

it has a positive trend albeit with large oscillations re�ecting that there is increasing

interdependence over this period. The correlation between �t and 	t is 0:94:

C Sensitivity Results

Figures 13 and 14 respectively give the global and European estimates of time-varying

interdependence estimates for alternative windows. The window widths are 2-years as
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Figure 13: Time-varying global entropy interdependence estimates for alternative win-
dows: 2-year (continuous), 3-year (short dashes), 4-year (dotted).

given by the continuous line 3-years as given by the short dashes, and 4-years as given

by the dotted line. All three sets of estimates in each graph track the overall changes

in interdependence over time. As to be expected wider window widths tend to yield

smoother 	t estimates.
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Figure 14: Time-varying European entropy interdependence estimates for alternative
windows: 2-year (continuous), 3-year (short dashes), 4-year (dotted).
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