
 

 
 
Crawford School of Public Policy 

CAMA 
Centre for Applied Macroeconomic Analysis 
 
 

The price elasticity of electricity demand in the 
United States: A three-dimensional analysis 
 
 

CAMA Working Paper 50/2017 
August 2017 
 
 
Paul J. Burke 
Crawford School of Public Policy, ANU and  
Centre for Applied Macroeconomic Analysis, ANU 
 
 
Ashani Abayasekara 
Institute of Policy Studies, Sri Lanka 
 
 
Abstract 
 
In this paper we employ a dataset of three dimensions - state, sector, and year - to 
estimate the short- and long-run price elasticities of state-level electricity demand in the 
United States. Our sample covers the period 2003-2015. We contribute to the literature 
by employing instrumental variable estimation approaches, using the between estimator, 
and pursuing panel specifications that are able to control for multiple dimensions of fixed 
effects. We conclude that state-level electricity demand is very price inelastic in the short 
run, with a same-year elasticity of -0.1. The long-run elasticity is near -1, larger than 
often believed. Among the sectors, it is industry that has the largest long-run price 
elasticity of demand. This appears to in part be due to electricity-intensive industrial 
activities clustering in low-price states. 

|  T H E  A U S T R A L I A N  N A T I O N A L  U N I V E R S I T Y  



Keywords 
 
electricity demand, price elasticity, United States, panel 
 
 
JEL Classification 
 
Q41, Q43, L94 
 
 
Address for correspondence:  
 
(E) cama.admin@anu.edu.au 
 
 
 
ISSN 2206-0332 
 
 
 
 
 
 
 
 
 
 
 
 

The Centre for Applied Macroeconomic Analysis in the Crawford School of Public Policy has been 
established to build strong links between professional macroeconomists. It provides a forum for quality 
macroeconomic research and discussion of policy issues between academia, government and the private 
sector. 
The Crawford School of Public Policy is the Australian National University’s public policy school, 
serving and influencing Australia, Asia and the Pacific through advanced policy research, graduate and 
executive education, and policy impact. 
 
 

|  T H E  A U S T R A L I A N  N A T I O N A L  U N I V E R S I T Y  

mailto:cama.admin@anu.edu.au
http://cama.crawford.anu.edu.au/


The price elasticity of electricity demand in the United States:  
A three-dimensional analysis 
 
Paul J. Burke* and Ashani Abayasekara** 
 
* Corresponding author. Centre for Applied Macroeconomic Analysis, Australian National 
University, Australia. paul.j.burke@anu.edu.au, +61 2 6125 6566 
** Institute of Policy Studies, Sri Lanka 
 
August 2017 
 
In this paper we employ a dataset of three dimensions – state, sector, and year – to estimate 
the short- and long-run price elasticities of state-level electricity demand in the United 
States. Our sample covers the period 2003–2015. We contribute to the literature by 
employing instrumental variable estimation approaches, using the between estimator, and 
pursuing panel specifications that are able to control for multiple dimensions of fixed 
effects. We conclude that state-level electricity demand is very price inelastic in the short 
run, with a same-year elasticity of –0.1. The long-run elasticity is near –1, larger than often 
believed. Among the sectors, it is industry that has the largest long-run price elasticity of 
demand. This appears to in part be due to electricity-intensive industrial activities clustering 
in low-price states. 
 
JEL codes: Q41, Q43, L94 
 
Keywords: electricity demand, price elasticity, United States, panel 
 
Acknowledgements: We are grateful for comments from Zsuzsanna Csereklyei, anonymous 
referees, and attendees at a presentation at the Indonesian Institute of Sciences (LIPI). 
Funding was received from the Australian Research Council (DE160100750). 

1 

mailto:paul.j.burke@anu.edu.au


1. INTRODUCTION 
In this study we use a three-dimensional (state*sector*year) panel dataset to estimate the short- 
and long-run price elasticities of state-level demand for on-grid electricity in the United States 
(US). Our dataset consists of annual data for the residential, commercial, and industrial sectors of 
each state over the years 2003–2015, as well as total state-level electricity use. Our estimates will 
be of use for projecting electricity use and for modeling the effects of tax, climate, and other 
policies. 
 
There is a sizeable literature on estimating the price elasticity of electricity demand in the United 
States. In terms of method, our paper contributes in several respects. First, we employ 
instrumental variable (IV) strategies in the identification of both short- and long-run price 
elasticities. Second, we estimate the long-run price elasticity using a cross-state approach that 
avoids the need to pursue dynamic panel techniques. Third, in estimating the short-run elasticity 
we utilize a three-dimensional panel approach that controls for various unobserved effects, 
including variables common to sectors in any state (across all years), sectors in any year (across 
all states), and states in any year (across all sectors). 
 
Our results suggest that the same-year price elasticity of state-level electricity demand in the US 
is small, at around –0.1 or less for all sectors. The long-run price elasticity appears to be much 
larger, at around –1.0. We find that electricity use by industry exhibits greater long-run price 
sensitivity than electricity use by the commercial sector, with residences a middle case. It makes 
sense that electricity use by industry is particularly price-sensitive over the long run, as 
electricity-intensive production should be expected to locate in states with relatively low 
electricity prices (Ellison and Glaeser, 1999; Kahn and Mansur, 2013). There are also substantial 
input substitution and efficiency possibilities in some industrial settings. 
 
Our study comes at a time of rapid change in electricity systems. A natural gas boom has placed 
downward pressure on electricity prices in some states. Technological change is reducing the 
cost of electricity generated using solar or wind. Efforts to reduce emissions have been 
introduced, and there has been growing take-up of smart meters. Time-of-day pricing is 
increasingly used, especially for large industrial and commercial consumers (Borenstein and 
Bushnell, 2015). Given these ongoing changes, it is of interest to pursue updated estimates of the 
price elasticity of electricity demand. 
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Among recent studies of the residential sector in the US, Alberini and Filippini (2011) used state-
level data for 48 states to obtain estimates of the short-run price elasticity of electricity demand 
of around –0.1 and of the long-run elasticity of up to –0.7. Miller and Alberini (2016) obtained a 
residential price elasticity of electricity demand of around –0.7 in their state-level panel estimate 
without state fixed effects for a dataset that extends to 2009.1 Using state-level panel data to 
2010, Sun and Yu (2017) found short- and long-run price elasticities of residential electricity 
demand of –0.1 and up to –1.0, respectively. Our results add to a consensus that the short-run 
price elasticity of aggregate residential electricity demand is around –0.1 and the long-run 
elasticity is substantially larger. Our study also explores price elasticities for other sectors. 
 
A recent paper analyzing aggregate electricity demand for multiple sectors is that of Ros (2017). 
Using dynamic panel models applied to utility-level data for 1972–2009, Ros found a long-run 
price elasticity of electricity demand of –0.4 for residences, –0.8 for the commercial sector, and –
0.6 for industry.2 Our alternative approach of using between-state variation to identify long-run 
effects provides larger elasticities for residences and industry, and a smaller elasticity for the 
commercial sector. We also explore estimates for the price elasticity of total electricity use 
(aggregated across all sectors). Our study uses more recent data than the study of Ros. 
 
Labandeira et al.’s (2017) recent meta-analysis of studies from around the world reported a mean 
short-run price elasticity of electricity demand of –0.1 and a mean long-run elasticity of –0.4. For 
US states we find a similar short-run elasticity, and a larger long-run elasticity. 
 
While our long-run price elasticity of aggregate electricity demand estimate of –1.0 is reasonably 
high, it is not outside the bounds of estimates of long-run price elasticities of demand for energy 
products. Using national-level data, Burke and Yang (2016) concluded that the long-run price 
elasticity of national natural gas demand is around –1.25. Demand for road-sector gasoline is 
typically found to be more price inelastic; Havranek et al.’s (2012) meta-analysis concluded that 
the long-run price elasticity is likely to be around −0.3. 
 

1 Miller and Alberini (2016) also presented estimates using data at the household, utility, and city levels. 
2 There are more utilities than states, so utility-level data provide a larger dataset. Ros (2017) also employed utility-
level variables, including the total factor productivity of the utility. 
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The remainder of the paper proceeds as follows. Section 2 provides an overview of the US 
electricity sector. Section 3 presents our methods. Section 4 describes our data. The results are 
presented in Section 5. Section 6 concludes. 
 
2. US ELECTRICITY SECTOR 
After decades of rapid growth, sales of electricity in the United States (US) have plateaued since 
the Great Recession of 2007–2009.3 The US is now the world’s second-largest consumer of 
electricity, behind China. The US Energy Information Administration (US EIA, 2017)’s 
reference case foresees electricity use (sales plus direct use) growing at an average of less than 
1% per year to 2050. 
 
US states have historically maintained vertically-integrated monopoly utilities with 
responsibilities covering generation, transmission, local distribution, and sales of electricity. 
These utilities have been regulated under cost-of-service arrangements. Reforms at the wholesale 
level since the 1990s have seen the contribution of independent power producers (IPPs) increase 
(Borenstein and Bushnell, 2015). As of 2015, 15 states plus the District of Columbia maintained 
deregulated regimes for retail electricity sales (American Public Power Association, 2016). 
 
The US net generation mix for electricity is currently dominated by coal (33% of net generation 
in 2015), natural gas (33%), and nuclear power (20%) (US EIA, 2016a). Hydro (6%) and wind 
(5%) also make important contributions. The contributions of coal and hydro have declined in 
recent years, and the contributions of natural gas, nuclear power, and modern renewables have 
increased. The electricity sector accounted for 39% of US primary energy use in 2015 (US EIA, 
2016b). 
 
In 2015 the residential sector accounted for the largest share of national electricity sales, at 37%. 
The commercial sector accounted for 36% and industry 26%, down from 29% in 2004. 
Transportation accounted for 0.2% of US electricity sales (US EIA 2016a). In this paper we 
focus on the three main consuming sectors, as well as total electricity sales. Our state-level 
estimates focus on the 48 contiguous US states. 

3 Electricity sales grew at an average rate of 7% per annum in the 1960s, 4% in the 1970s, 3% in the 1980s, 2% in 
the 1990s, and 1% in the first decade of the new millennium. Electricity sales in 2015 were slightly below those in 
2007. This was due to reduced sales to industry and the transportation sector. Sales to residences and the commercial 
sector were slightly higher in 2015 than in 2007 (US EIA, 2016a). 
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Electricity prices vary across states, reflecting factors such as the availability of power plants, 
local fuel costs, and regulatory decisions. In 2015, the average final electricity price for the states 
in our sample ranged from 7.4 cents per kWh in Washington to 17.8 cents per kWh in 
Connecticut. Prices also vary by sector. Industry faces relatively low average prices given the 
large quantities consumed by industrial enterprises and their ability to receive electricity at 
higher voltages (US EIA, 2016c). 
 
Figure 1 shows national-average real electricity prices by sector for 2003–2015. Since 2009, the 
overall average fell at a mean rate of 0.7% per annum in real terms. The fastest reduction has 
been for industry (at an average rate of 1.5% per annum). National averages mask substantial 
differences in the electricity price trends of individual states. Over 2009–2015, the mean real 
electricity price fell at an average rate of 3.7% per annum in Texas (the state with the fastest 
decline), while it increased by 3.1% per annum in North Dakota (the state with the fastest 
increase). 
 
Figure 2 presents the relationship between the log average electricity price and log electricity 
sales per capita for the 48 states in 2015. As should be expected, a strong negative association 
can be seen, with an R2 of 0.66. Per capita electricity sales tend to be highest in relatively low-
price states such as Wyoming, North Dakota, Louisiana, and Alabama. Per capita electricity 
sales are lowest in high-price states such as California, Rhode Island, New York, and 
Massachusetts. 
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Figure 1: Average real electricity price by sector, 2003–2015 

 
Note: Generated using national-total data from the US EIA (2016a), deflated using the national consumer price 
index (urban consumers) from the Bureau of Labor Statistics (2017). Data do not cover direct use of self-generated 
electricity. 
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Figure 2: Average electricity price and per capita electricity sales across states in the US, 
2015 

 
Notes: 48 states included, as per our regressions. The fitted line has an R2 of 0.66. Generated using data from the US 
EIA (2016a). Price is shown on the y axis in accordance with the standard presentation of a demand curve. The 
average electricity price for consumption across all sectors is used. Electricity sales have been converted to per 
capita terms to remove the effect of population. In our regressions, this is done by controlling for Ln Population. 
 
3. METHODS 
We commence with a cross-state method for obtaining long-run elasticities and then describe our 
panel approach in first differences for obtaining short-run elasticities. 
 
3.1 Method for long-run elasticity 
Prior studies typically seek to identify the long-run price elasticity of electricity demand via 
dynamic models with lagged dependent variables (e.g. Houthakker, 1980; Dergiades and 
Tsoulfidis, 2008; Alberini and Filippini, 2011; Ros, 2017; Sun and Yu, 2017). These studies 
back-out an implied long-run multiplier based on forward simulations of their model, using a 
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formula that divides the short-run multiplier by 1–ψ, where ψ is the coefficient on the lagged 
dependent variable. 
 
We avoid the above approach, for several reasons. Dynamic models require an assumption about 
the exact form of the dynamic process, a challenging task when the effects of price shocks may 
be realized with varying lag lengths. Panel estimates that use lagged dependent variables are 
affected by the issue of dynamic panel bias (Nickell, 1981; Barro, 2015). Methods for addressing 
this issue, such as differenced and system generalized methods of moments (GMM) techniques, 
can be unreliable when data are non-stationary (Blundell and Bond, 1998; Roodman, 2009), as is 
the case for US electricity sales (see discussion below). These methods are also sensitive to 
specification choices, measurement error, and weak instruments (Hauk and Wacziarg, 2009; Bun 
and Windmeijer, 2010; Bazzi and Clemens, 2013; Hauk, 2017). 
 
We instead pursue a simpler way forward: we isolate long-run effects by exploiting the 
“between” variation in electricity prices and electricity use across states. This is the variation that 
is observable in Figure 2. We exploit the between variation using both cross-sectional 
regressions and, in the panel context, the “between estimator”. The between estimator utilizes the 
means of each variable for each state over the full time period, providing long-run effects 
without requiring any specification of dynamics (Baltagi and Griffin, 1984; Pesaran and Smith, 
1995; Pirotte, 1999, 2003; Baltagi, 2008). The approach avoids issues related to non-stationarity 
of time-series data, and there is evidence that it is subject to less bias than panel methods that 
focus on the “within” variation of the data (Hauk and Wacziarg, 2009; Hauk, 2017). Stern (2010, 
p. 2175) concluded that the between estimator is the “best estimator of long-run relations in 
panel data”. The approach has been increasingly used to estimate long-run effects in applied 
economics research (e.g. Burke and Nishitateno, 2013, 2015; Delgado et al. 2014; Edwards, 
2016; Ma and Stern, 2016), although has yet to be used to estimate the long-run price elasticity 
of electricity demand in the US. A key concern with the between estimator is that it can be 
subject to omitted variable bias. We use an IV strategy to address this issue. 
 
We commence with cross-state regressions for the year 2015. Assuming that each state is in a 
long-run equilibrium, these provide information on the long-run reasons for variation in 
electricity sales across states. We estimate the following model: 
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ln𝐸𝐸𝑠𝑠 = 𝛼𝛼 + 𝛽𝛽ln𝑃𝑃𝑠𝑠 + 𝛾𝛾ln𝑌𝑌𝑠𝑠 + 𝛿𝛿ln𝑁𝑁𝑠𝑠 + 𝑿𝑿′𝑠𝑠𝜽𝜽 + 𝜀𝜀𝑠𝑠      (1) 
 
where E is electricity sales in state s, in gigawatt-hours (GWh) per year; P is the average real 
final price of electricity in cents per kilowatt hour; Y is GDP per capita per year, in real dollars; N 
is population; X is a vector of other potential determinants of electricity demand; ε an error; and 
ln denotes the natural logarithm. We estimate Eq. (1) for three sectors: residences, the 
commercial sector, and industry. We also present an estimate for total electricity sales in each 
state. These regressions each use one dimension of the dataset (the cross-state dimension). 
 
After presenting cross-state estimates for 2015 we compare these to estimates for 2003, the first 
year of our sample. We then proceed to estimates using the between estimator for the full period 

2003–2015. Our interest is �̂�𝛽, the long-run price elasticity of electricity demand. 
 
Our use of a log-log specification follows the standard approach in prior studies (e.g. Shin, 1985; 
Miller and Alberini, 2016; Ros, 2017; Sun and Yu, 2017). The log-log specification has some 
attractive properties, including (a) directly providing elasticities, (b) producing residuals with 
more desirable distributions,4 (c) ensuring that the predicted values of electricity consumption 
are always positive, and (d) reducing the potential influence of any outliers. We tested a squared 
log price term in the cross-sectional regression for total electricity sales in 2015, but it entered 
insignificantly. A strong negative association between price and quantity is obtained in a 
specification that does not use logs. 
 
Estimating Eq. (1) is subject to an identification challenge: because average electricity prices are 
calculated as total revenue from electricity sales divided by the total quantity of sales in kWh, 
our key explanatory variable is affected by the dependent variable. The existence of block 
pricing arrangements, for example, means that higher electricity demand may directly influence 
the average electricity prices paid by customers. Another issue is that high demand might push 
states toward more expensive electricity sources, forcing up the state’s average electricity price. 
Unobserved factors may also be correlated with both electricity demand and electricity use. 
While retail electricity prices remain regulated in many states, this does not make them 
exogenous to electricity demand. 

4 We plotted the residuals against the fitted values for the 2015 cross-sectional regressions by sector. Systematic 
patterns in the residuals were more likely to be observable for the unlogged regressions. 
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We adopt an IV approach to address this potential endogeneity of our electricity price measure. 
An ideal instrument would be a supply-side factor that affects average electricity prices but is not 
directly correlated with demand for electricity. We use the coal plus hydro share of the net 
electricity generation mix. When only private costs are considered, coal and hydro have been 
among the lowest-cost sources of electricity generation in the US.5 The coal plus hydro share of 
the electricity mix is thus likely to be negatively correlated with average electricity prices. 
 
One issue with the above IV approach is that high demand might lead to a change in energy mix, 
for example by pushing states to adopt energy sources other than coal and hydro. This would 
affect our instrument. To reduce this possibility we use the ten-year lag of the coal plus hydro 
share.6 Our identification strategy thus exploits the fact that coal and hydro have historically 
been relatively low-cost electricity sources and the expectation that – whether due to ongoing use 
of coal plus hydro or to some stickiness in state-by-state rankings in electricity prices – states 
that have historically had high coal plus hydro shares of the net generation mix currently have 
relatively low average electricity prices.7 The approach shares some similarities with that of Fell 
et al. (2014), who instrumented with fuel mix shares and fuel mix shares interacted with fuel 
prices. 
 
A negative association between the ten-year lagged coal plus hydro share of the electricity mix 
and the state-average electricity price is demonstrated in Figure 3. The fitted line has a 
coefficient of –0.60, indicating that an additional 10 percentage points of the net generation mix 
from coal plus hydro in 2005 is on average associated with average electricity prices being 6% 
lower in 2015. States that had low reliance on coal plus hydro in 2005 – such as Rhode Island, 
Connecticut, and New Jersey – tended to face relatively high final electricity prices as of 2015. 
States that have relied on coal plus hydro for nearly all of their electricity– such as West 
Virginia, North Dakota, and Montana – tend to have lower prices. 
 

5 This is less the case now than it was in earlier years as a result of low-price natural gas and modern renewables. 
6 We obtain similar results using the 25-year lag. 
7 In deregulated wholesale markets, the wholesale price is set by the marginal electricity source. During times of 
peak usage, this is often natural gas. At other times, other generation sources can influence the wholesale price. The 
coal plus hydro share of electricity generation can thus influence average annual wholesale prices, and in turn 
average annual retail prices. Borenstein and Bushnell (2015) note that hydro availability influences wholesale prices 
in the Pacific Northwest. 
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Figure 3: Ln Average electricity price (2015) and the coal plus hydroelectricity share of 
electricity (2005) 

 
Note: 48 states included. The average electricity price is for consumption across all sectors. The fitted line has a 
slope of –0.60 and an R2 of 0.51. Uses data from US EIA (2016a). Hydro excludes pumped storage. The share 
ranges from 0 to 1. Codes are not shown for all states. 
 

A requirement for our IV approach is that the coal plus hydro share of the electricity mix is only 
relevant for electricity sales via the electricity price. It is possible that consumers curtail their 
electricity use when they know electricity in their state is generated by (emissions-intensive) 
coal, but any such effect is likely to be minor. Abundance of coal and water might be directly 
linked to greater industrial activity, and hence electricity use. For this reason, the IV exclusion 
restriction may be more credible for residences than industry. We nevertheless believe our IV 
strategy worth pursuing given the strength of the direct channel between the instrument and 
electricity prices. We will present both single-equation and IV results. 
 
Our X vector includes the following controls: the log number of heating degree days (HDD) in 
each state, as some heating systems use electricity; the log number of cooling degree days 
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(CDDs), as air conditioning is a major source of electricity demand, especially for residences;8 
the log real citygate natural gas price; and a logged time-invariant measure of the extent to which 
each state’s congressional delegations voted in a pro-environment way over the full period 1990–
2005, from Dietz et al. (2015). We include the latter because pro-environment states might 
introduce measures that increase retail electricity prices (e.g. an emissions trading scheme) in 
addition to separate measures to directly improve energy efficiency, creating a potential omitted 
variable issue in the absence of the control. We include the log real natural gas price because 
natural gas is a key potential substitute for electricity (in addition to being an input to electricity 
generation). Results are similar without this control. We avoid controlling for the industrial 
structure of each state’s economy, as this might be affected by electricity prices; including such a 
control would potentially attenuate our estimates. We include the same set of controls for each 
sector. 
 
3.2 Method for short-run elasticity 
To estimate the short-run price elasticity of electricity demand for US states, we commence with 
the following two-dimensional panel specification by state (s) and year (y), using data for total 
electricity use across all sectors: 
 

∆ln𝐸𝐸𝑠𝑠,𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽∆ln𝑃𝑃𝑠𝑠,𝑦𝑦 + 𝛾𝛾∆ln𝑌𝑌𝑠𝑠,𝑦𝑦 + 𝛿𝛿∆ln𝑁𝑁𝑠𝑠,𝑦𝑦 + ∆𝑿𝑿′𝑠𝑠,𝑦𝑦𝜽𝜽 + 𝜂𝜂𝑠𝑠 + 𝜂𝜂𝑦𝑦 + 𝑢𝑢𝑠𝑠,𝑦𝑦  (2) 

 

�̂�𝛽 is here the short-run – i.e. same-year – price elasticity of state-level electricity demand.9 Eq. 
(2) controls for state (ηs) and year (ηy) fixed effects.10 The state fixed effects control for state-
specific differences in electricity use growth. The year fixed effects control for time-specific 
shocks that could impact electricity use. Δ is the first-difference operator, and u an error. The X 
vector is the same as earlier, other than that it excludes the environmental voting measure as this 
is time-invariant and so disappears in the differencing. 
 
Eq. (2) uses first differences for two reasons. One is that taking first-differences hones in on the 
effect of year-to-year shocks, suiting a short-run interpretation. Second, Dickey and Fuller 

8 Our use of degree day controls in logged form follows the standard approach in the literature. See, for example, 
Ros (2017). 
9 It is possible to analyze responses over shorter, including intra-day, periods (e.g. Jessoe and Rapson, 2014). 
10 Random effects provide similar results. We do not control for time trends, instead allowing time effects to vary for 
each year. 
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(1979) tests with linear time trends on aggregate data for the US were unable to reject the nulls 
that the logs of national electricity sales and the national-average real electricity price contain 
unit roots. This means that shocks may have permanent effects on the levels of the variables. The 
nulls of unit roots were rejected for the first-differences. Using data in first differences allows us 
to avoid potential spurious regression results arising from unit root issues. 
 
We finally move to the following three-dimensional specification, using a panel of states (s), 
sectors (g), and years (y): 
 
∆ln𝐸𝐸𝑠𝑠,𝑔𝑔,𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽∆ln𝑃𝑃𝑠𝑠,𝑔𝑔,𝑦𝑦 + 𝛾𝛾∆ln𝑌𝑌𝑠𝑠,𝑦𝑦 + 𝛿𝛿∆ln𝑁𝑁𝑠𝑠,𝑦𝑦 + ∆𝑿𝑿′𝑠𝑠,𝑦𝑦𝜽𝜽 + 𝜂𝜂𝑠𝑠,𝑔𝑔 + 𝜂𝜂𝑔𝑔,𝑦𝑦 + 𝜂𝜂𝑠𝑠,𝑦𝑦 + 𝑢𝑢𝑠𝑠,𝑔𝑔,𝑦𝑦   

            (3) 

 
Eq. (3) includes three sets of two-dimensional fixed effects: 
 

(a) state*sector fixed effects (𝜂𝜂𝑠𝑠,𝑔𝑔), to control for unobserved differences in electricity sales 

growth rates in each sector in each state; 

(b) sector*year fixed effects (𝜂𝜂𝑔𝑔,𝑦𝑦), to control for unobserved differences in electricity sales 

growth rates in each sector in each year; and 
(c) state*year fixed effects (𝜂𝜂𝑠𝑠,𝑦𝑦), to control for unobserved differences in electricity sales 

growth rates in each state in each year. To avoid perfect collinearity, we exclude the 
observed controls when these fixed effects are included. 

 
Using the three-dimensional panel structure, we will explore if the short-run price elasticity of 
electricity demand varies by sector, over time, by region of the US, and for real price increases 
and decreases. 
 
A potential endogeneity issue exists for our short-run estimates: same-year changes in electricity 
prices may be affected by same-year changes in electricity demand, or be correlated with omitted 
variables. To address this issue, we also pursue an IV approach in our three-dimensional panel 
estimates: we instrument the change in the log average electricity price per kWh in sector j using 
the change in the log average electricity price paid by all consumers outside the sector but in the 
same state and year.11 The average price paid by these other consumers is not directly influenced 

11 This includes consumers in the other two sectors plus the transportation sector. 
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by feedback from quantity demanded within a sector. Given that proportional changes in 
electricity tariffs in any state and year are often similar for each sector, the approach thus 
exploits a somewhat more exogenous source of variation in electricity prices. We exclude the 
state*year fixed effects when pursuing this IV strategy. We do not instrument our two-
dimensional estimates. 
 
3.3 Additional issues 
Breusch and Pagan (1979) tests reject the null of no heteroscedasticity, both for the cross-state 
and panel models. Wherever possible, we present standard errors that are robust to 
heteroscedasticity.12 Wooldridge (2002) autocorrelation tests suggest the possible presence of 
first-order autocorrelation in our differenced panel settings. In our two-dimensional panel we 
thus also cluster the standard errors at the state level to take state-specific patterns of 
autocorrelation into account. In our three-dimensional panel, standard errors are clustered by 
state*sector. 
 
States are heterogeneous in terms of their electricity sales. In 2015, electricity sales in Texas 
equaled 392 TWh, 10% of the national total. There was only 5 TWh of electricity sold in 
Vermont, 0.1% of the national total. Given this heterogeneity, our estimates use weighted least 
squares (WLS), with a weight equal to the square root of the number of consumers for each panel 
observation.13 
 
Our use of final consumer prices and electricity consumption by final consumers is suited to the 
estimation of a demand (cf. supply) function. It is possible that log GDP per capita is co-
determined with electricity demand, but we find similar estimates in specifications that exclude 
this variable. The state*year fixed effects will control for interruptions to electricity availability 
in any state in any year. Our analysis assumes that electricity is otherwise available at prevailing 
prices. 
 

We expect the price elasticity of state-level electricity demand, �̂�𝛽, to be negative, consistent with 
a downward-sloping demand curve. This elasticity is likely to be larger in the long run than the 
short run, as learning about and responding to price changes likely takes time. As mentioned, 

12 Robust standard errors are not available for the between estimator. 
13 For the residential and commercial sectors, this weight is highly correlated with population (correlation 
coefficients = 0.94). For industry, this correlation is lower (0.66). 
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there are reasons to think that the long-run elasticity will be particularly large for industry if, for 
example, electricity-intensive processes tend to locate in states with low electricity prices. 
 
4. DATA 
Our dataset has three dimensions: state, sector, and year. The states are the 48 contiguous US 
states. The sectors are residential, commercial, and industrial consumers. The time dimension is 
each year during 2003–2015. The sample starts in 2003 because this is the first year for which 
the current US EIA (2016a) sectoral definitions were used. Our between panel estimates thus 
cover 624 observations (48 states*13 years) for each sector. One year is lost in the first-
differencing, meaning that our three-dimensional estimates cover 1,728 observations (48 states*3 
sectors*12 years). All panels are balanced. 
 
Our electricity price measure is the real price paid by end-use consumers, averaged across all 
kWh in year-2015 cents per kWh. It is calculated by dividing revenue from electricity sales by 
the quantity of electricity sold. Revenue includes all relevant end-user charges, fees, and taxes. 
We deflate using the regional consumer price index from the Bureau of Labor Statistics (2017).14 
Our use of an average price receives support from evidence that information and cognitive 
constraints cause households to respond to the average rather than the marginal electricity price 
(Shin, 1985; Ito, 2014), although this may be less applicable for commercial and industrial 
consumers. Our dependent variable uses data on electricity sales, which excludes captive 
generation (“direct use”) of electricity. 
 
Our main sources of data are the US EIA (2016a, 2016e), the Bureau of Economic Analysis 
(BEA, 2017), National Oceanic and Atmospheric Administration (NOAA, 2016), and Dietz et al. 
(2015). Variable definitions and data sources are listed in the Appendix. Summary statistics are 
in Table 1. The statistics show that there is substantial variation in all variables. Average real 
electricity prices on average increase at a rate of around 1% per annum, but with a standard 
deviation that is several times this magnitude. Variability in the growth rate of average electricity 
prices is particularly pronounced for the industry sector.

14 Results using nominal prices are similar. A breakdown into fixed and variable charges is not available. 
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Table 1: Summary statistics, 2003–2015 
 

Variable Unit Mean Standard 
deviation 

Minimum Maximum 

Residential 
  Electricity sales GWh 28,484 27,113 2,011 145,654 
  Electricity price (real) Cents/kWh (2015 prices) 11.93 2.98 7.28 22.35 
  ΔLn Electricity price (real) Differenced log units 0.01 0.05 -0.23 0.24 
Commercial 
  Electricity sales GWh 26,960 26,989 1,881 139,432 
  Electricity price (real) Cents/kWh (2015 prices) 10.17 2.62 5.89 18.83 
  ΔLn Electricity price (real) Differenced log units 0.01 0.05 -0.27 0.26 
Industrial 
  Electricity sales GWh 20,616 18,652 799 110,182 
  Electricity price (real) Cents/kWh (2015 prices) 7.47 2.48 4.17 16.48 
  ΔLn Electricity price (real) Differenced log units 0.01 0.07 -0.41 0.44 
Total      
  Electricity sales GWh 76,210 68,569 5,352 392,337 
  Electricity price (real) Cents/kWh (2015 prices) 10.03 2.85 5.74 19.87 
  ΔLn Electricity price (real) Differenced log units 0.01 0.05 -0.29 0.23 
Controls      
  GDP per capita (real) Chained 2009 dollars 46,150 8,312 30,139 70,697 
  Population People 6,322,311 6,803,190 503,453 38,993,940 
  HDD Degree days 5,220 2,074 482 10,072 
  CDD Degree days 1,112 817 122 4,166 
  Natural gas price (real) Dollars per thousand cubic feet (2015 prices) 7.47 2.36 3.14 14.81 
  Environmental voting score1990–2005 Scale of 0 (lowest) to 100 (highest) 45.43 23.75 3.81 91.25 
Note: The above are for annual data for the 48 contiguous US states. The first-differenced series are for 2004–2015. See Appendix for 
variable descriptions. 

 
 

 

16 



5. RESULTS 
5.1 Long-run estimates 
Table 2 presents our cross-state estimates for 2015. Estimates for residences are presented first 
(columns 1–2), followed by estimates for the commercial sector (columns 3–4), industry 
(columns 5–6), and then total electricity sales in each state (columns 7–8). 
 
Focusing firstly on the residential estimates, the long-run price elasticity of electricity demand is 
estimated to be –0.95 in the single-equation estimate and –1.01 in the IV estimate. The similarity 
of these estimates suggests that endogeneity issues are not substantial at the residential level.15 
The coefficient for population is 0.93, suggesting that more populous states consume more 
electricity for residential purposes, as expected. Having more cooling degree days is associated 
with greater electricity use by residences, presumably mostly in the form of air-conditioner use. 
The other variables do not have robustly significant influences on residential electricity use. 
 
Turning to the commercial sector, we obtain estimates of the long-run price elasticity of 
electricity demand of –0.34 (single-equation) and –0.60 (IV). The single-equation estimate is 
significantly smaller than that for residences. A positive coefficient is obtained for log GDP per 
capita, suggesting that states with higher per-capita GDP use more electricity in commercial 
activities. Population and CDD have positive effects on commercial electricity use. 
 
The estimates in columns 5–6 of Table 2 suggest that state-level electricity sales to industry are 
particularly sensitive to electricity prices. We obtain long-run price elasticities of on-grid 
electricity demand by industry of –1.17 (single-equation) and –1.71 (IV), both significantly 
larger than the estimates for the commercial sector. A state’s population is somewhat less 
relevant for industrial electricity use, with a population-electricity use elasticity of 0.78. We also 
find evidence that natural gas and electricity are complements for industry. This makes sense, as 
these energy forms are often joint inputs. 
 

15 Recent studies of the price elasticity of gasoline demand (Burke and Nishitateno, 2013) and of natural gas demand 
(Burke and Yang, 2016) also find quite similar single-equation and IV results.  
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Table 2: Long-run elasticities from cross-state estimates, 2015 
Dependent variable: Ln Electricity saless 
  (1) (2) (3) (4) (5) (6) (7) (8) 
 Residential Commercial Industrial Total 
 Non-IV IV Non-IV IV Non-IV IV Non-IV IV 
Ln Electricity price (real)s -0.95*** -1.01*** -0.34*** -0.60*** -1.17*** -1.71*** -0.88*** -1.02*** 

(0.14) (0.16) (0.11) (0.16) (0.26) (0.56) (0.09) (0.15) 
Ln GDP per capita (real)s -0.10 -0.08 0.44*** 0.48*** 0.18 0.42 0.13 0.17 

(0.11) (0.10) (0.15) (0.15) (0.48) (0.48) (0.16) (0.16) 
Ln Populations 0.93*** 0.93*** 0.92*** 0.92*** 0.78*** 0.78*** 0.90*** 0.90*** 

(0.03) (0.03) (0.03) (0.03) (0.10) (0.09) (0.03) (0.03) 
Ln HDDs 0.03 0.04 -0.02 -0.02 0.32 0.30 0.04 0.04 

(0.05) (0.05) (0.05) (0.05) (0.19) (0.20) (0.05) (0.05) 
Ln CDDs 0.22*** 0.22*** 0.12** 0.11** 0.15 0.16 0.14*** 0.14*** 

(0.05) (0.04) (0.05) (0.05) (0.15) (0.17) (0.05) (0.05) 
Ln Natural gas price (real)s 0.28 0.29* 0.02 0.01 -0.89** -0.85* -0.05 -0.03 

(0.17) (0.16) (0.11) (0.08) (0.42) (0.44) (0.12) (0.10) 
Ln Environmental voting score1990–2005

s 0.03 0.04 -0.06 -0.02 -0.29** -0.20 -0.05 -0.02 
(0.05) (0.04) (0.04) (0.05) (0.12) (0.14) (0.06) (0.06) 

R2 0.98 0.98 0.98 0.98 0.81 0.80 0.98 0.98 
States 48 48 48 48 48 48 48 48 
Unweighted estimate -0.88*** -0.89*** -0.37*** -0.64*** -1.46*** -1.99*** -0.92*** -1.01*** 
p-value: Test of parameter equality with ...         
   Residential estimate - - 0.00  0.17  0.36  0.06  - - 
   Commercial estimate 0.00  0.17  - - 0.00  0.00  - - 
First stage         
   Instrumented variable: Ln Electricity prices; Instrument: (Coal + hydroelectricity share of electricity mix)s,y–10 
   Coefficient on instrument - -0.55*** - -0.53*** - -0.66*** - -0.58*** 
   F statistic on instrument - 32.83 - 27.50 - 11.83 - 27.40 
Notes: ***, **, and * indicate statistical significance at 1, 5, and 10%. Estimates use weighted least squares (WLS), with a weight equal to the 
square root of the number of electricity customers in each state. The Stock and Yogo (2005) test statistic for 10% maximal IV size is 16.38. Robust 
standard errors are in parentheses. Tests of parameter equality are for the Ln Electricity price term, and were carried out using seemingly unrelated 
regressions. Coefficients on constants not reported. Unweighted estimate does not use WLS, and shows the coefficient for the Ln Electricity price 
(real)s. IV = instrumental variable. Non-IV = single-equation estimate. 
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Our estimates for total electricity sales (columns 7–8 of Table 2) indicate that long-run aggregate 
electricity demand is quite close to having a unitary price elasticity. The point estimate for the 
long-run population elasticity is 0.90, and for the CDD elasticity is 0.14. Log GDP per capita 
enters positively but insignificantly. The variables in our model are able to explain 98% of the 
variation in log electricity sales across US states. Almost all of this explanatory power is from 
two variables: log population and the log average electricity price. 
 
The base of Table 2 provides information on the first stage of our IV estimates. Strong 
identification is obtained for residences, the commercial sector, and in total, with first-stage F 
statistics on our instrument of up to 32.83. These pass the Stock and Yogo (2005) test for weak 
instruments. First-stage identification is weaker for industry. The base of Table 2 also shows that 
the unweighted estimates are generally quite similar to the WLS estimates.  
 
Figure 4 compares estimates for 2015 with those from the first year of our sample, 2003. In all 
cases the estimate for 2003 is not significantly different from the corresponding estimate for 
2015. The point estimates are also generally similar for the two years. The largest difference is 
for the IV estimates for industry, but these have relatively large standard errors. 
 
Table 3 presents long-run elasticities using the between estimator for the period 2003–2015.16 
The price elasticities are in general quite similar to the cross-sectional estimates for 2015, again 
indicative of relatively stable relationships. The point estimates for industry remain quite large. 
On the basis of Tables 2 and 3 we conclude that the long-run price elasticity of electricity 
demand is around –1 for residences, between –0.3 and –0.6 for the commercial sector, –1.2 or 
larger for industry, and around –1 in total. 
 
 

16 Analytic weights are not available for the between estimator in Stata. Table 3 consequently does not use weights. 

19 

                                                           



Figure 4: Long-run price elasticities of electricity demand from cross-state estimates, 2003 
and 2015 

 

Notes: 2015 estimates are the same as those in Table 2. 2003 estimates use the same estimation strategy. Resid, = 
residential. Comm. = commercial. Indust. = industrial. The p-values for tests of parameter equality for 2003 and 
2015 for each of the eight sets of estimates are: 0.88, 0.80, 0.86, 0.66, 0.95, 0.41, 0.29, and 0.49. The 2003 and 2015 
estimates are thus not significantly different from one another. These tests were carried out using seemingly 
unrelated regression estimates.
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Table 3: Long-run elasticities from between panel estimates, 2003–2015 
Dependent variable: Ln Electricity saless,y 
  (1) (2) (3) (4) (5) (6) (7) (8) 
 Residential Commercial Industrial Total 
 Non-IV IV Non-IV IV Non-IV IV Non-IV IV 
Ln Electricity price (real)s,y -1.12*** -1.16*** -0.46*** -0.56*** -1.44*** -1.34*** -1.00*** -1.00*** 

(0.12) (0.17) (0.11) (0.17) (0.33) (0.47) (0.12) (0.17) 
Ln GDP per capita (real)s,y 0.17 0.18 0.55*** 0.59*** -0.03 -0.09 0.37** 0.37** 

(0.13) (0.14) (0.13) (0.14) (0.44) (0.49) (0.14) (0.15) 
Ln Populations,y 0.94*** 0.94*** 0.95*** 0.95*** 0.86*** 0.86*** 0.93*** 0.93*** 

(0.02) (0.02) (0.02) (0.02) (0.07) (0.07) (0.02) (0.02) 
Ln HDDs,y -0.22*** -0.23*** -0.11 -0.13* 0.25 0.27 -0.12 -0.12 

(0.07) (0.07) (0.07) (0.07) (0.23) (0.24) (0.07) (0.08) 
Ln CDDs,y 0.07 0.06 0.04 0.03 0.17 0.17 0.06 0.06 

(0.04) (0.05) (0.04) (0.05) (0.14) (0.14) (0.05) (0.05) 
Ln Natural gas price (real)s,y 0.82*** 0.85*** 0.02 0.08 0.06 -0.02 0.41* 0.41* 

(0.20) (0.22) (0.19) (0.21) (0.63) (0.69) (0.21) (0.23) 
Ln Environmental voting score1990–2005

s 0.00 0.01 -0.06* -0.05 -0.19 -0.20* -0.07* -0.07* 
(0.04) (0.04) (0.03) (0.04) (0.12) (0.12) (0.04) (0.04) 

R2 0.99 0.99 0.99 0.99 0.86 0.86 0.98 0.98 
Observations 624 624 624 624 624 624 624 624 
States 48 48 48 48 48 48 48 48 
First stage         
   Instrumented variable: Ln Electricity prices,y; Instrument: (Coal + hydroelectricity share of electricity mix)s,y–10 
   Coefficient on instrument - -0.57*** - -0.57*** - -0.67*** - -0.61*** 
   F statistic on instrument - 41.29 - 32.64 - 40.12 - 42.85 
Notes: ***, **, and * indicate statistical significance at 1, 5, and 10%. The instrumented variable is Ln Electricity prices,y. The Stock-Yogo test statistic 
for 10% maximal IV size is 16.38. Standard errors in parentheses. The coal + hydroelectricity share variable ranges from 0 to 1. Hydroelectricity 
excludes pumped storage. Coefficients on constants not reported. No weights are used. IV = instrumental variable. Non-IV = single-equation estimate. 
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A positive and significant effect of GDP per capita is detected in the between estimates in Table 
3: 1% higher GDP per capita is typically associated with 0.4% more electricity sales (ceteris 
paribus). This is largely due to additional electricity use in the commercial sector. We obtain 
frequently insignificant coefficients for some control variables, such as log CDD.17 The natural 
gas cross-price elasticities differ from those in Table 2, with stronger evidence being obtained 
that natural gas is a substitute for electricity at the residential level. 
 
As discussed, part of the reason for a large long-run price elasticity of electricity demand for 
industry could be that electricity-intensive industrial activities tend to concentrate in states with 
low electricity prices. Take the (electricity-hungry) aluminum industry as an example. As of 
2015, the states that made the largest contributions to US primary aluminum production capacity 
were Washington (23%) and Kentucky (23%) (U.S. Geological Survey, 2016). Washington had 
the lowest average electricity price for industry of all US states in 2015, and Kentucky the fifth-
lowest. Unreported cross-state regressions (both single-equation and IV) for 2015 reveal a 
negative association between the average industrial electricity price of each state and its 
production capacity for primary aluminum. This supports the idea that electricity-intensive 
industry seeks out low electricity prices. Kahn and Mansur (2013) provide detailed evidence that 
energy-intensive industry concentrates in counties with low electricity prices. 
 
5.2 Short-run estimates 
Table 4 presents our two-dimensional state-year panel estimates in first differences, using data 
for total electricity sales in each state. Column 1 presents an estimate with no controls. A very 
inelastic effect is detected: a 1% increase in electricity prices is typically associated with a same-
year reduction in the quantity of electricity demanded of 0.10%. The point estimate is marginally 
smaller (–0.09) in the subsequent columns. These columns add the controls and state and year 
fixed effects. 
 
We find a positive short-run effect of GDP per capita in Table 4, suggesting that electricity 
demand tends to grow more quickly during years of rapid economic growth (all else equal). The 
effect of population is strong in the short run, and positive effects of HDD and CDD are 

17 The coefficient for log HDD is negative for residences. This is perhaps because residences in cold states tend to 
use natural gas for heating. If connected to natural gas, residences would tend to use this fuel for other purposes also, 
such as cooking. Hence their electricity use might be lower. Estimates of the long-run price elasticity of electricity 
demand remain generally similar without the degree day controls. 
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obtained. The HDD result implies that colder weather within states leads to more electricity 
demand. Our model is able to explain two-thirds of the year-to-year fluctuations in log electricity 
sales. 
 

Table 4: Two-dimensional estimates in first-differences 
Dependent variable: ΔLn Electricity saless,y 
  (1) (2) (3) (4) 
ΔLn Electricity price (real)s,y -0.10*** -0.09*** -0.09*** -0.09*** 

(0.03) (0.02) (0.02) (0.02) 
ΔLn GDP per capita (real)s,y  0.36*** 0.35*** 0.14*** 

 (0.04) (0.04) (0.05) 
ΔLn Populations,y  0.83*** 0.80*** 0.68*** 

 (0.14) (0.22) (0.19) 
ΔLn HDDs,y  0.08*** 0.08*** 0.07*** 

 (0.02) (0.02) (0.02) 
ΔLn CDDs,y  0.06*** 0.06*** 0.05*** 

 (0.01) (0.01) (0.01) 
ΔLn Natural gas price (real)s,y  0.03*** 0.03*** -0.01 

  (0.00) (0.00) (0.01) 
State fixed effects - - Yes Yes 
Year fixed effects - - - Yes 
R2 0.02 0.53 0.56 0.66 
Observations: 576. States: 48. Years: 2004–2015. Sector = Total. 
Notes: ***, **, and * indicate statistical significance at 1, 5, and 10%. Estimates 
use weighted least squares, with a weight equal to the square root of the number 
of electricity customers in each state*year. Robust standard errors clustered by 
state are in parentheses. Coefficients on constants and fixed effects not shown. No 
instrument is used. 

 

Table 5 presents our three-dimensional estimates. Column 1 has no controls; an elasticity of –
0.10 is obtained, similar to the two-dimensional specification. The elasticity remains quite stable 
once the controls and the state*sector and sector*year fixed effects are added (columns 2–3). 
Estimates for the control variables are reasonably similar to those in Table 4. Column 4 allows 
the coefficients for the controls to vary by sector. A same-year price elasticity of demand of –
0.10 is again obtained. 
 
Column 5 of Table 5 adds the state*year fixed effects. This results in a more tightly-controlled 
specification due to a strong cross-correlation between the state*year fixed effects and our 
differenced log electricity price measure. The same-year price elasticity of electricity demand 
increases to –0.24, significantly different from zero at the 10% level.
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Table 5: Three-dimensional estimates in first-differences 
Dependent variable: ΔLn Electricity saless,g,y     
 (1) (2) (3) (4) (5)   (6) 
 Non-IV          IV 
ΔLn Electricity price (real)s,g,y -0.10*** -0.09*** -0.10*** -0.10*** -0.24*  -0.06*** 

(0.03) (0.02) (0.02) (0.02) (0.13)  (0.02) 
ΔLn GDP per capita (real)s,y  0.22*** 0.11**     

 (0.04) (0.05)     
ΔLn Populations,y  1.07*** 0.78***     

 (0.21) (0.15)     
ΔLn HDDs,y  0.12*** 0.09***     

 (0.02) (0.02)     
ΔLn CDDs,y  0.08*** 0.07***     

 (0.01) (0.01)     
ΔLn Natural gas price (real)s,y  0.03*** -0.01     

  (0.00) (0.01)         
State*sector fixed effects - Yes Yes Yes Yes  Yes 
Sector*year fixed effects - - Yes Yes Yes  Yes 
Sector-specific coefficients for controls - - - Yes -  Yes 
State*year fixed effects - - - - Yes  - 
R2 0.01 0.37 0.46 0.47 0.63  0.45 
Observations: 1,728. States: 48. Sectors: 3. Years: 2004–2015 
First stage        
   Coefficient on instrument       0.93*** 
   F statistic on instrument       2,420.89 
Notes: ***, **, and * indicate statistical significance at 1, 5, and 10%. Estimates use weighted least squares, with a weight equal to the 
square root of the number of electricity customers in each state*sector*year. Robust standard errors clustered by state*sector are in 
parentheses. Coefficients on constants and fixed effects not shown. Coefficients for controls are not shown in columns 4 and 6. Column 
6: The instrument is ΔLn Electricity price (real)Other

s,g,y, the real average price paid by all other consumers in the state per kWh of sales. 
The instrumented variable is ΔLn Electricity prices,g,y. The Stock-Yogo test statistic for 10% maximal IV size is 16.38. IV = instrumental 
variable. Non-IV = single-equation estimate. 
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Column 6 of Table 5 instruments each sector’s log change in average electricity price with the 
log change in the average price of electricity paid by all consumers outside the sector but in the 
same state and year. The instrument is not directly affected by changes in the level of electricity 
demand within each individual sector. We allow sector-specific coefficients for the controls. The 
instrument performs well in the first stage, obtaining a large F-statistic. We obtain a smaller 
short-run price elasticity of electricity demand of –0.06. This estimate is significantly different 
from zero at the 1% level. As our headline result we report a short-run price elasticity of 
electricity demand of around –0.1, the mean of our estimates in Tables 4 and 5. 
 
Table 6 presents heterogeneity analysis for the short-run price elasticity of electricity demand. 
We utilize the three-dimensional dataset so as to exploit possible heterogeneity in effects along 
each of the dimensions. We include the controls and fixed effects, with the exception of the 
state*year fixed effects so as to avoid the issue of over-controlling. We allow the coefficients for 
the controls to vary by sector. 
 
Column 1 of Table 6 explores for sectoral differences in the same-year price elasticity of 
electricity demand. We find larger point estimates for industry and residences (–0.11 for each), 
although the elasticity for industry is not significantly different from zero. For the commercial 
sector, we find a statistically insignificant elasticity of –0.05. The same-year elasticities for the 
three sectors are not significantly different from one another.18 
 
Column 2 of Table 6 tests if the same-year price elasticity of electricity demand for 2008–2015 
(after the onset of the Great Recession) has differed from the elasticity for earlier years. Our 
motivation for exploring this issue is that the trajectory of US electricity use has changed 
substantially, and it is possible that the price elasticity of electricity demand has too. The results 
suggest that the same-year elasticity has increased slightly, from –0.07 to –0.11, with the 
difference significantly different from zero at the 1% level. 
 
Column 3 of Table 6 estimates separate same-year price elasticities of electricity demand for four 
regions of the United States.19 In point estimate terms, the largest elasticity is for the Midwest 

18 The three-dimensional estimate in column 1 of Table 6 provides identical coefficients to separate two-dimensional 
(state, year) estimates by sector. This is because all coefficients (including the constant) have been allowed to vary 
by sector. The standard errors for the electricity price term are slightly lower in the three-dimensional setting. 
19 Regional definitions are in the Appendix. 
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and the smallest for the South. These elasticities do not significantly differ from one another. We 
therefore conclude that there is not strong evidence of substantial regional heterogeneity in the 
short-run price elasticity of electricity demand in the US. 
 

Table 6: Testing for heterogeneity in same-year elasticity (three-dimensional panel) 
Dependent variable: ΔLn Electricity saless,g,y   
 (1) (2) (3) (4) 
Sector interactions     
  ΔLn Electricity price (real)s,g,y*Residential dummyg -0.11***    

(0.02)    
  ΔLn Electricity price (real)s,g,y*Commercial dummyg -0.05    

(0.05)    
  ΔLn Electricity price (real)s,g,y*Industrial dummyg -0.11    

(0.07)    
Time period interactions     
  ΔLn Electricity price (real)s,g,y*2004–2007 dummyy  -0.07***   

 (0.02)   
  ΔLn Electricity price (real)s,g,y*2008–2015 dummyy  -0.11***   

 (0.02)   
Region interactions     
  ΔLn Electricity price (real)s,g,y*Northeast dummys   -0.09***  

  (0.03)  
  ΔLn Electricity price (real)s,g,y*Midwest dummys   -0.14***  

  (0.05)  
  ΔLn Electricity price (real)s,g,y*South dummys   -0.08**  

  (0.04)  
  ΔLn Electricity price (real)s,g,y*West dummys   -0.09**  

  (0.04)  
Potential asymmetry interactions     
  ΔLn Electricity price (real)s,g,y*Dummy for years of real price 
increases,g,y 

   -0.11*** 
   (0.03) 

  ΔLn Electricity price (real)s,g,y*Dummy for years of real price 
decreases,g,y 

   -0.07 
      (0.05) 

Controls (with sector-specific coefficients) Yes Yes Yes Yes 
State*sector fixed effects Yes Yes Yes Yes 
Sector*year fixed effects Yes Yes Yes Yes 
R2 0.47 0.48 0.47 0.47 
Observations: 1,728. States: 48. Sectors: 3. Years: 2004–2015 
Notes: ***, **, and * indicate statistical significance at 1, 5, and 10%. Estimates use weighted least squares, 
with a weight equal to the square root of the number of electricity customers in each state*sector*year. Robust 
standard errors clustered by state*sector are in parentheses. Coefficients on controls, constants, and fixed effects 
not shown. No instrument is used. 

 

It is possible that the short-run price elasticity of electricity demand differs in years of real price 
increases and years of real price decreases. To test this, column 4 of Table 6 includes separate 
differenced log price terms for years of increases (59% of observations) and years of decreases 
(41%) in the average real electricity price of each state*sector. A larger coefficient is obtained 
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for years of real price increases, although one that is not significantly different from the 
coefficient for years of real price decreases. 
 

6. CONCLUSION 
In this study we used three-dimensional data to estimate aggregate short- and long-run price 
elasticities of electricity demand in the US. In the long run, electricity demand by industry is the 
most price responsive, with an elasticity of –1.2 or larger. The long-run price elasticity of 
electricity demand for the commercial sector is –0.3 to –0.6, and for residences around –1. Total 
state demand for electricity has a long-run price elasticity of around –1, similar to the residential 
group. The same-year price elasticity of electricity demand is on average around –0.1. Much of 
the demand response to electricity prices is thus delayed. 
 
A largely delayed response to electricity price changes makes sense. Many activities are difficult 
to adjust in the short run, as the capital stock has already been acquired and put to use. In the 
long run, factors are able to adjust more flexibly. Energy efficiency improvements to the building 
stock, for example, can pan out over decades. Electricity-intensive activities can also locate in 
states with low electricity prices. 
 
Our study does not examine specific substitution responses to electricity price changes. For 
example we do not estimate the extent to which electricity price increases encourage the use of 
energy-efficient technologies, induce substitution to off-grid electricity sources, or induce 
relocation. Future research might examine such responses. 
 
Dramatic ongoing reductions in the costs of generating electricity using solar panels and wind 
turbines suggest that a future of low electricity prices may one day be possible (Bloomberg New 
Energy Finance, 2016). Our estimates suggest that the immediate demand-side effects of any 
future reductions in electricity prices are likely to be small. If current differentials across states 
serve as a guide, the long-run demand-side effects of lower electricity prices may be 
considerably larger. 
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APPENDIX: VARIABLE DESCRIPTIONS 
Electricity sales: Quantity of sales of electricity to ultimate customers, in gigawatt-hours. Data 
are for a census of electricity providers. The variable does not cover direct use of electricity 
generated by an entity or affiliate. Source: US EIA (2016a). 
 
Electricity price (real): Average end-user electricity price, in year-2015 cents/kWh. Data are for 
a census of electricity providers, and are calculated by dividing revenues by quantities. Includes 
taxes (state and local), energy charges (e.g. for transmission/distribution), demand charges, 
customer service charges, environmental surcharges, franchise fees, fuel adjustments, and other 
miscellaneous charges to end-use customers. Does not include deferred charges, credits, or 
adjustments, e.g. revenue from electricity purchased in prior reporting periods (US Census 
Bureau, 2011). Source: US EIA (2016a). We constructed a real measure by deflating with the 
regional consumer price index from the Bureau of Labor Statistics (2017). 
 
Electricity customers: Number of electricity customers. Data are for a census of electricity 
providers. Source: US EIA (2016a). 
 
The above three variables vary by state, sector, and year. Consistent sector definitions are 
available for 2003 onwards. The sectors are: 
 
• Residential: Customers in single and multi-family residences, apartments, and mobile 

homes. Excludes institutional living quarters (e.g. prisons). 
• Commercial: Retail, office, education, institutional, and public-sector customers, plus 

outdoor and public street lighting. Includes institutional living quarters (e.g. prisons); private 
and public organizations such as religious, social, or fraternal groups; interdepartmental 
sales; other sales to public authorities. 

• Industrial: Facilities and equipment used for producing, processing, or assembling goods. 
Includes manufacturing; agriculture, forestry, fishing and hunting; mining and oil and gas 
extraction; construction. 

• Total: Residential + commercial + industrial + transportation. 
 

The US EIA (2016f) notes that “changes from year to year in consumer counts, sales and 
revenues, particularly involving the commercial and industrial consumer sectors, may result from 
respondent implementation of changes in the definitions of consumers, and reclassifications”. 
 
Gross domestic product per capita (real): Real GDP in chained 2009 dollars divided by mid-year 
population estimate. Measured at the state*year level. Data follow the North American Industry 
Classification System (NAICS). Source: US BEA (2017). 
 
Population: Mid-year population estimate, in number of persons. Measured at the state*year 
level. Source: US BEA (2017). 
 
Heating degree days: Number of degrees each day’s average temperature is below 650 

Fahrenheit, summed by day to an annual aggregate. The data are the average estimated number 
of heating degree days, population-weighted across climate divisions in each state. Unit: 
Fahrenheit degree days. Measured at the state*year level. Source: NOAA (2016). 
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Cooling degree days: Number of degrees each day’s average temperature is above 650 

Fahrenheit, summed by day to an annual aggregate. The data are the average estimated number 
of cooling degree days, population-weighted across climate divisions in each state. Unit: 
Fahrenheit degree days. Measured at the state*year level. Source: NOAA (2016). 
 
Natural gas price: Natural gas citygate price, in year-2015 dollars per thousand cubic feet. The 
citygate is where a distributing utility receives gas from a natural gas company or transmission 
system. Measured at the state*year level. Source: US EIA (2016e). We constructed a real 
measure by deflating by the regional consumer price index from the Bureau of Labor Statistics 
(2017). 
 
Environmental voting score (1990–2005): League of Conservation Voters score for pro-
environmental voting by each state’s Senate and House delegations for the period 1990–2005. 
The League provides a score for each member of Congress in each year, on a scale of 0 (lowest) 
to 100 (highest). The League also provides an average for the Senate and House delegations of 
each state in each year. We use the average of each state’s Senate and House scores in each year, 
as provided by Dietz et al. (2015). We then take the time-invariant average for 1990–2005. 
 
Coal + hydroelectricity share of electricity mix: Coal-fired + conventional hydroelectricity share 
of net generation. Ranges between 0 and 1. Calculated using data in megawatt hours. Measured 
at the state*year level. Source: US EIA (2016a). 
 
Regions: 
• Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, 

Pennsylvania, Rhode Island, Vermont. 
• Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North 

Dakota, Ohio, South Dakota, Wisconsin. 
• South: Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, 

Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West 
Virginia. 

• West: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 
Washington, Wyoming. 

• Source: US Census Bureau (2016). 
 
Years: Calendar years. 
 
States: Our state-based regression analysis excludes Alaska, Hawaii, and Washington DC due to 
missing data on cooling and heating degree days, natural gas price, and/or environmental voting 
score. National data include Alaska, Hawaii, and Washington DC. 
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